论文标题

关于riemann zeta函数的平均而言较小的乘法函数

On multiplicative functions which are small on average and zero free regions for the Riemann zeta function

论文作者

Aymone, Marco

论文摘要

在简短的说明中,我们证明了以下结果:如果完全乘法函数$ f:\ mathbb {n} \ to [-1,1] $平均很小,从某种意义上说,$ \ sum_ {n \ leq x} f(n)\ ll x^{1-δ} $ f(1)= 0 $,然后我们为任何$ε> 0 $,$ \ sum_ {p \ leq x}(1+f(p))\ log p \ ll x^{1-δ+ε} $获得。此外,存在这种$ f $的必要条件是Riemann Zeta函数$ζ$在半平面$ re(s)> 1-δ$中没有零。

In this short note we prove the following result: If a completely multiplicative function $f:\mathbb{N}\to[-1,1]$ is small on average in the sense that $\sum_{n\leq x}f(n)\ll x^{1-δ}$, for some $δ>0$, and if the Dirichlet series of $f$, say $F(s)$, is such that $F(1)=0$, then we obtain that for any $ε>0$, $\sum_{p\leq x}(1+f(p))\log p\ll x^{1-δ+ε}$. Moreover, a necessary condition for the existence of such $f$ is that the Riemann zeta function $ζ(s)$ has no zeros in the half plane $Re(s)>1-δ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源