论文标题
与兼容反身关系的身份相对应的MAL'CEV条件
Mal'cev conditions corresponding to identities for compatible reflexive relations
论文作者
论文摘要
我们研究了通过方程式所描述的MAL'CEV条件,其变量跨越所有兼容的反身关系。令$ p \ leq q $为语言$ \ {\ wedge,\ circ,+\} $中的方程式。我们对所有兼容反身关系的$ p \ leq q $的所有类别的类别进行表征。目的是找到对所有兼容反射关系的方程式表达的条件的PIXLEY-WILLE算法的类似物,并在方程式$ p \ leq q $中表征当在一致性lattices或所有兼容Algebras在Algebras of Algebras的集合中考虑时,表达了相同的属性。
We investigate Mal'cev conditions described by equations whose variables runs over the set of all compatible reflexive relations. Let $p \leq q$ be an equation in the language $\{\wedge, \circ,+\}$. We give a characterization of the class of all varieties which satisfy $p \leq q$ over the set of all compatible reflexive relations. The aim is to find an analogon of the Pixley-Wille algorithm for conditions expressed by equations over the set of all compatible reflexive relations, and to characterize when an equation $p \leq q$ expresses the same property when considered over the congruence lattices or over the sets of all compatible reflexive relations of algebras in a variety.