论文标题

粘弹性流体的振荡挤压流动中的时间平均运输

Time-averaged transport in oscillatory squeeze flow of a viscoelastic fluid

论文作者

Yang, Rui, Christov, Ivan C., Griffiths, Ian M., Ramon, Guy Z.

论文摘要

已知流动周期性流量会产生非零时的热量或溶质物种的通量,这分别是由于相位速度和温度/浓度场的相互作用。在本文中,我们研究了两个平行板之间的间隙中的这种运输(一种众所周知的泰勒 - 阿里斯分散),其中一种是垂直振荡的,产生了牛顿或麦克斯韦液体的时间周期性挤压流动。使用多个时间尺度均质化的方法,描述该流中传输的质量/热平衡方程将减小为一维对流 - 扩散 - 反应方程。该结果表明系统中质量/热传递的三种有效机制:有效扩散沿浓度/温度梯度散布质量/热量,有效的对流通量以及在时间平衡框架中释放或吸收质量/热的有效反应。我们的结果表明,当无量纲板振荡频率(由Womersley数量体现,短暂惯性与粘性力的比率)接近特定值时,存在速度峰值的共振模式。结果,该流量中的运输受到无量纲频率的显着影响。一方面,有效,时间平均的分散系数总是大于分子扩散率,并且在共振附近得到了明显增强。流体弹性与振荡强迫之间的相互作用提高了系统中运输的效率。另一方面,确定的有效对流和反应机制可能会从高浓度/温度区域将质量/热量转移到低浓度/温度的区域,反之亦然,具体取决于无量纲频率的值。

Periodically-driven flows are known to generate non-zero, time-averaged fluxes of heat or solute species, due to the interactions of out-of-phase velocity and temperature/concentration fields, respectively. Herein, we investigate such transport (a form of the well-known Taylor--Aris dispersion) in the gap between two parallel plates, one of which oscillates vertically, generating a time-periodic squeeze flow of either a newtonian or Maxwellian fluid. Using the method of multiple time-scale homogenization, the mass/heat balance equation describing transport in this flow is reduced to a one-dimensional advection--diffusion--reaction equation. This result indicates three effective mechanisms in the mass/heat transfer in the system: an effective diffusion that spreads mass/heat along the concentration/temperature gradient, an effective advective flux, and an effective reaction that releases or absorbs mass/heat - in the time-averaged frame. Our results demonstrate that there exist resonant modes under which the velocity peaks when the dimensionless plate oscillation frequency (embodied by the Womersley number, the ratio of the transient inertia to viscous forces) approaches specific values. As a result, transport in this flow is significantly influenced by the dimensionless frequency. On the one hand, the effective, time-averaged dispersion coefficient is always larger than the molecular diffusivity, and is sharply enhanced near resonance. The interaction between fluid elasticity and the oscillatory forcing enhances the efficiency of transport in the system. On the other hand, the identified effective advection and reaction mechanisms may transport mass/heat from regions of high concentration/temperature to those of low concentration/temperature, or vice versa, depending on the value of dimensionless frequency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源