论文标题

关于拉格朗日交叉点和勒迪德里亚殖民主义的注释

A note on Lagrangian intersections and Legendrian Cobordism

论文作者

Suárez, Lara Simone

论文摘要

令$λ,λ'$为一对封闭的Legendrian submanifolds,在封闭的触点歧管$(y,ξ= ker(α))$中,由legendrian cobordism $ w \ subset(\ mathbb {c} \ times y,\ times y,\ tilde y,\ tilde = ker(-y dx +α))$。在本说明中,我们表明,在高级设置中,如果$λ$与floer同源性的原因相交,则与lagrangian $ p \ subset y $相交,那么$λ'$也是如此。

Let $Λ, Λ'$ be a pair of closed Legendrian submanifolds in a closed contact manifold $(Y, ξ= Ker(α))$ related by a Legendrian cobordism $W\subset (\mathbb{C}\times Y, \tildeξ=Ker(-y dx +α))$. In this note, we show that in the hypertight setting, if $Λ$ intersects a closed, weakly exact or monotone pre-Lagrangian $P\subset Y$ for reasons of Floer homology, then so does $Λ'$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源