论文标题

一般稀疏性制度中的最佳非自适应概率组测试

Optimal Non-Adaptive Probabilistic Group Testing in General Sparsity Regimes

论文作者

Bay, Wei Heng, Price, Eric, Scarlett, Jonathan

论文摘要

在本文中,我们考虑了无嘈杂的非自适应概率群体测试的问题,其中目标是有缺陷集的高概率恢复。 We show that in the case of $n$ items among which $k$ are defective, the smallest possible number of tests equals $\min\{ C_{k,n} k \log n, n\}$ up to lower-order asymptotic terms, where $C_{k,n}$ is a uniformly bounded constant (varying depending on the scaling of $k$ with respect to $n$) with a simple explicit 表达。算法上限是从对确定缺陷(DD)算法的现有分析进行的次要适应以及与算法无关的下限构建的,这是基于对制度的现有作品的$ k \ le n^{1-ω(1)}(1)} $和$ k =θ(n)$。在足够稀疏的制度(包括$ k = o \ big(\ frac {n} {\ log n} \ big)$)中,我们的主要结果通过避免避免假设$ k \ le n^^{1- {1- {1- {1-} $(neyeas),而$ k的coja-oghlan {\ em et al。}(2020)(2020) \ frac {n} {\ log n} \ big)$),我们的主要结果表明,对于任何非零目标成功概率,单个测试在任何非零目标成功概率上都是最佳的,因此就误差概率和假定的缩放量表而言,增强了Aldridge(2019)的现有结果。

In this paper, we consider the problem of noiseless non-adaptive probabilistic group testing, in which the goal is high-probability recovery of the defective set. We show that in the case of $n$ items among which $k$ are defective, the smallest possible number of tests equals $\min\{ C_{k,n} k \log n, n\}$ up to lower-order asymptotic terms, where $C_{k,n}$ is a uniformly bounded constant (varying depending on the scaling of $k$ with respect to $n$) with a simple explicit expression. The algorithmic upper bound follows from a minor adaptation of an existing analysis of the Definite Defectives (DD) algorithm, and the algorithm-independent lower bound builds on existing works for the regimes $k \le n^{1-Ω(1)}$ and $k = Θ(n)$. In sufficiently sparse regimes (including $k = o\big( \frac{n}{\log n} \big)$), our main result generalizes that of Coja-Oghlan {\em et al.} (2020) by avoiding the assumption $k \le n^{1-Ω(1)}$, whereas in sufficiently dense regimes (including $k = ω\big( \frac{n}{\log n} \big)$), our main result shows that individual testing is asymptotically optimal for any non-zero target success probability, thus strengthening an existing result of Aldridge (2019) in terms of both the error probability and the assumed scaling of $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源