论文标题

加速器的边界类似物的黑洞

Accelerating boundary analog of a Kerr black hole

论文作者

Good, Michael R. R., Foo, Joshua, Linder, Eric V.

论文摘要

加速的边界对应关系(即,平坦的时空加速镜轨迹)是针对Kerr时空得出的,其通用公式的范围从Schwarzschild极限(零角动量)到极端的最大旋转情况(产生渐近均匀的均匀加速)。 Beta Bogoliubov系数显示,由于角动量的“春季常数”类似物,粒子光谱是晚期的粒子分布,温度比Schwarzschild Black Hole的温度更低。量子应力张量表明在晚期与永恒热平衡一致的能量通量恒定发射。

An accelerated boundary correspondence (i.e. a flat spacetime accelerating mirror trajectory) is derived for the Kerr spacetime, with a general formula that ranges from the Schwarzschild limit (zero angular momentum) to the extreme maximal spin case (yielding asymptotic uniform acceleration). The beta Bogoliubov coefficients reveal the particle spectrum is a Planck distribution at late times with temperature cooler than a Schwarzschild black hole, due to the "spring constant" analog of angular momentum. The quantum stress tensor indicates a constant emission of energy flux at late times consistent with eternal thermal equilibrium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源