论文标题
使用旋转等级特征在表面上的CNN
CNNs on Surfaces using Rotation-Equivariant Features
论文作者
论文摘要
本文涉及几何深度学习中的一个基本问题,该问题是在表面上卷积神经网络的构建中产生的。由于曲率,滤波器在表面上的转运导致旋转歧义,从而防止了这些核在表面上的均匀比对。我们为表面的网络体系结构提供了一个由矢量值,旋转等值的功能组成的。在卷积层中汇总特征时,等效性属性使得可以在任意坐标系统中计算的本地对齐特征。最终的网络不可知对表面上切线空间的坐标系统的选择不可知。我们实施三角形网格的方法。基于圆形谐波函数,我们引入了在离散级别旋转等值的网格的卷积过滤器。我们在形状对应和形状分类任务上评估所得网络,并将其性能与其他方法进行比较。
This paper is concerned with a fundamental problem in geometric deep learning that arises in the construction of convolutional neural networks on surfaces. Due to curvature, the transport of filter kernels on surfaces results in a rotational ambiguity, which prevents a uniform alignment of these kernels on the surface. We propose a network architecture for surfaces that consists of vector-valued, rotation-equivariant features. The equivariance property makes it possible to locally align features, which were computed in arbitrary coordinate systems, when aggregating features in a convolution layer. The resulting network is agnostic to the choices of coordinate systems for the tangent spaces on the surface. We implement our approach for triangle meshes. Based on circular harmonic functions, we introduce convolution filters for meshes that are rotation-equivariant at the discrete level. We evaluate the resulting networks on shape correspondence and shape classifications tasks and compare their performance to other approaches.