论文标题
结构自适应弹性网
Structure Adaptive Elastic-Net
论文作者
论文摘要
在高维统计中,受惩罚的线性回归至关重要,并且通常用于对高维预测变量的响应进行回归。在许多科学应用中,存在编码预测因子的预测能力和稀疏结构的外部信息。在本文中,我们提出了结构自适应弹性网(SA-Enet),该结构为将潜在有用的侧面信息纳入惩罚回归提供了新的框架。基本思想是将外部信息转化为回归系数的不同惩罚强度。我们特别关注组和协变量依赖性结构,并研究所得估计量的风险特性。为此,我们将最近引入的状态进化框架概括为对SA-ENET框架分析近似消息的算法。我们表明,SA-Enet估计器的有限样本风险与国家进化方程所预测的理论风险一致。我们的理论表明,具有信息群或协变量结构的SA-ENET可以胜过套索,自适应拉索,稀疏组套索,特征加权弹性网和graper。在我们的数值研究中进一步证实了这一证据。我们还证明了我们方法从分子生物学和精确医学中对白血病数据的有用性和优越性。
Penalized linear regression is of fundamental importance in high-dimensional statistics and has been routinely used to regress a response on a high-dimensional set of predictors. In many scientific applications, there exists external information that encodes the predictive power and sparsity structure of the predictors. In this article, we propose the Structure Adaptive Elastic-Net (SA-Enet), which provides a new framework for incorporating potentially useful side information into a penalized regression. The basic idea is to translate the external information into different penalization strengths for the regression coefficients. We particularly focus on group and covariate-dependent structures and study the risk properties of the resulting estimator. To this, we generalize the state evolution framework recently introduced for the analysis of the approximate message-passing algorithm to the SA-Enet framework. We show that the finite sample risk of the SA-Enet estimator is consistent with the theoretical risk predicted by the state evolution equation. Our theory suggests that the SA-Enet with an informative group or covariate structure can outperform the Lasso, Adaptive Lasso, Sparse Group Lasso, Feature-weighted Elastic-Net, and Graper. This evidence is further confirmed in our numerical studies. We also demonstrate the usefulness and the superiority of our method for leukemia data from molecular biology and precision medicine.