论文标题

具有奇异控制的有限燃油能力扩展的平均场景

Mean-Field Games of Finite-Fuel Capacity Expansion with Singular Controls

论文作者

Campi, Luciano, De Angelis, Tiziano, Ghio, Maddalena, Livieri, Giulia

论文摘要

我们研究了NASH Equilibria,其中包括一系列对称$ n $ n $玩家的随机游戏,其中有限燃油能力扩展,并具有单数控制及其平均场地游戏(MFG)对手。我们通过简单的迭代方案构建MFG的解决方案,该方案在(状态依赖性的)表面上以Skorokhod反射产生最佳控制,该方案将状态空间拆分为行动和无行为区域。然后,我们证明,麦克风扩展的解决方案会导致$ n $ - 玩家游戏的近似Nash Equilibria,近似错误$ \ VAREPSILON $将零作为$ n $趋于无限。我们的分析完全依赖于概率方法,并扩展了奇异随机控制和最佳停止之间的众所周知的联系。

We study Nash equilibria for a sequence of symmetric $N$-player stochastic games of finite-fuel capacity expansion with singular controls and their mean-field game (MFG) counterpart. We construct a solution of the MFG via a simple iterative scheme that produces an optimal control in terms of a Skorokhod reflection at a (state-dependent) surface that splits the state space into action and inaction regions. We then show that a solution of the MFG of capacity expansion induces approximate Nash equilibria for the $N$-player games with approximation error $\varepsilon$ going to zero as $N$ tends to infinity. Our analysis relies entirely on probabilistic methods and extends the well-known connection between singular stochastic control and optimal stopping to a mean-field framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源