论文标题

$ m^{[x]}/m/1 $处理器共享队列(ii)

Sojourn time in a $M^{[X]}/M/1$ Processor Sharing Queue with batch arrivals (II)

论文作者

Guillemin, F., Rodriguez, V. K. Quintuna, Simonian, A., Nasri, R.

论文摘要

对于$ m^{[x]}/m/1 $处理器共享队列与批处理,研究了批处理的sojourn Time $ω$。 我们首先表明$ω$的分布通常可以从无限线性差异系统中获得。当进一步假设批处理大小具有给定参数$ q \ [0,1 [$ [$)的几何分布时,通过相关的双变量生成函数$(x,x,x,u,v)\ mapsto e(x,x,u,v)$进一步分析了这种差异系统。具体而言,用$ s \ mapsto e^*(s,u,v)$ $ e(\ cdot,u,v)$和定义$$φ(s,u,v)= p(s,s,u)\,(1- v)\,(1- v)\,(1- v) \ vert <1,$$对于某些已知的多项式$ p(s,u)$以及其中$$ f^*(s,s,u,v)= \ frac {e^*(s,s,u,u,v)-e^*(s,s,s,q,q,q,v)} {u-q} \ frac {\ partialφ} {\ partial u} - \ left [\ frac {\ q} {p(s,s,s,u)} \右] v(1- v)\,\ frac {\ frac {\partialφ} $ \ ell(s,u,v)$涉及$ e^*(s,q,v)$和第一阶派生$ \ partial e^*(s,s,q,v)/\ partial v $在边界点$ u = q $。通过其特征曲线和所需的分析性属性以$φ$解决此PDE最终确定单方面的拉普拉斯变换$ e^*$。 通过对此转换$ e^*$的拉普拉斯反转,然后以积分形式给出了批量的sojourn时间$ω$的分布函数。最终得出了Sojourn Time $ω$的分布的尾巴行为。

For the $M^{[X]}/M/1$ processor Sharing queue with batch arrivals, the sojourn time $Ω$ of a batch is investigated. We first show that the distribution of $Ω$ can be generally obtained from an infinite linear differential system. When further assuming that the batch size has a geometric distribution with given parameter $q \in [0,1[$, this differential system is further analyzed by means of an associated bivariate generating function $(x,u,v) \mapsto E(x,u,v)$. Specifically, denoting by $s \mapsto E^*(s,u,v)$ the one-sided Laplace transform of $E(\cdot,u,v)$ and defining $$ Φ(s,u,v) = P(s,u) \, (1-v) \, F^*(s,u,uv), \quad 0 < \vert u \vert < 1, \, \vert v \vert < 1, $$ for some known polynomial $P(s,u)$ and where $$ F^*(s,u,v) = \frac{E^*(s,u,v)-E^*(s,q,v)}{u-q}, $$ we show that the function $Φ$ verifies an inhomogeneous linear partial differential equation (PDE) $$ \frac{\partial Φ}{\partial u} - \left [ \frac{u - q}{P(s,u)} \right ] v(1-v) \, \frac{\partial Φ}{\partial v} + \ell(s,u,v) = 0 $$ for given $s$, where the last term $\ell(s,u,v)$ involves both $E^*(s,q,v)$ and the first order derivative $\partial E^*(s,q,v)/\partial v$ at the boundary point $u = q$. Solving this PDE for $Φ$ via its characteristic curves and with the required analyticity properties eventually determines the one-sided Laplace transform $E^*$. By means of a Laplace inversion of this transform $E^*$, the distribution function of the sojourn time $Ω$ of a batch is then given in an integral form. The tail behavior of the distribution of sojourn time $Ω$ is finally derived.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源