论文标题

Milliego:单芯片MMWave Radar辅助通过深传感器融合估算

milliEgo: Single-chip mmWave Radar Aided Egomotion Estimation via Deep Sensor Fusion

论文作者

Lu, Chris Xiaoxuan, Saputra, Muhamad Risqi U., Zhao, Peijun, Almalioglu, Yasin, de Gusmao, Pedro P. B., Chen, Changhao, Sun, Ke, Trigoni, Niki, Markham, Andrew

论文摘要

对人和机器人等移动药物的稳健轨迹估计是为新兴能力(例如增强现实或自动互动)等新兴功能提供空间意识的关键要求。尽管目前以光学技术为主导,例如视觉惯性探测器,但它们遭受了场景照明或无特征表面的挑战。作为替代方案,我们提出了Milliego,这是一种新型的深度学习方法,用于鲁棒性估计,利用低成本MMWAVE雷达的能力。尽管MMWave雷达比单眼相机具有基本优势,即提供绝对的比例或深度,但是当前的单芯片解决方案具有有限且稀疏的成像分辨率,使现有的点云登记技术变得脆弱。我们提出了一种新的体系结构,该架构旨在解决这个具有挑战性的姿势转化问题。其次,要与其他传感器(例如惯性或视觉传感器我们引入了一种混合注意力的深层融合方法。通过广泛的实验,我们证明了我们提出的系统能够达到1.3%的3D误差漂移,并且可以很好地推广到看不见的环境。我们还表明,神经体系结构可以高效,适合实时嵌入式应用。

Robust and accurate trajectory estimation of mobile agents such as people and robots is a key requirement for providing spatial awareness for emerging capabilities such as augmented reality or autonomous interaction. Although currently dominated by optical techniques e.g., visual-inertial odometry, these suffer from challenges with scene illumination or featureless surfaces. As an alternative, we propose milliEgo, a novel deep-learning approach to robust egomotion estimation which exploits the capabilities of low-cost mmWave radar. Although mmWave radar has a fundamental advantage over monocular cameras of being metric i.e., providing absolute scale or depth, current single chip solutions have limited and sparse imaging resolution, making existing point-cloud registration techniques brittle. We propose a new architecture that is optimized for solving this challenging pose transformation problem. Secondly, to robustly fuse mmWave pose estimates with additional sensors, e.g. inertial or visual sensors we introduce a mixed attention approach to deep fusion. Through extensive experiments, we demonstrate our proposed system is able to achieve 1.3% 3D error drift and generalizes well to unseen environments. We also show that the neural architecture can be made highly efficient and suitable for real-time embedded applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源