论文标题
扭曲且均匀紧张的过渡金属二核苷的同型摩尔层中可调节晶格的理论
Theory of tunable flux lattices in the homobilayer moiré of twisted and uniformly strained transition metal dichalcogenides
论文作者
论文摘要
内部电子自由度的空间纹理对材料的性质具有深远的影响。真实空间中的这种质地可以表现为新兴磁场(或浆果曲率),该磁场有望引起有趣的山谷/与自旋相关的传输现象。 Moiré模式是在2D原子晶体的界面上作为空间变化而出现的,它为研究这种真实的空间浆果曲率效应提供了自然平台。在这里,我们研究了由于扭曲,各种均匀的应变谱及其组合而在同叶剂过渡金属二甲构基(TMDS)中形成的Moiré结构,其中电子可以驻留在任一层中,并且层指数作为内部自由度。该层伪旋转在MoiréSupercell中表现出涡流/抗Vortex纹理,导致巨大的几何磁场和标量电势。在几何图片中,Moiré磁场被发现是平面外伪旋转梯度和平面伪内旋转方向的交叉产物。我们发现了均匀菌株的双重作用:除了成为同类人群中Moire原子质地的原因外,它还贡献了伪造潜力,从而修改了互层耦合的局部阶段。因此,可以用应变来调整面板伪旋转纹理,而层间偏置则调整了平面外伪旋转,我们展示了Moiré磁场的空间曲线,强度和磁通量如何可以进行工程。通过几何标量校正,也可以与Moiré磁场一起设计标量电势的景观,从而形成独特的有效晶格结构。这些特性使TMDMoiré结构有望构建可调通量晶格,用于运输和拓扑材料应用。
The spatial texture of internal degree of freedom of electrons has profound effects on the properties of materials. Such texture in real space can manifest as an emergent magnetic field (or Berry curvature), which is expected to induce interesting valley/spin-related transport phenomena. Moiré pattern, which emerges as a spatial variation at the interface of 2D atomic crystals, provides a natural platform for investigating such real space Berry curvature effects. Here we study moiré structures formed in homobilayer transition metal dichalcogenides (TMDs) due to twisting, various uniform strain profiles, and their combinations, where electrons can reside in either layer with the layer index serving as an internal degree of freedom. The layer pseudo-spin exhibits vortex/antivortex textures in the moiré supercell, leading to a giant geometric magnetic field and a scalar potential. Within a geometric picture, the moiré magnetic field is found as the cross product of the gradients of the out-of-plane pseudo-spin and the in-plane pseudo-spin orientation respectively. We discover dual roles of uniform strain: Besides being a cause of the moire atomic texture in the homobilayer, it also contributes a pseudo-gauge potential that modifies the local phase of interlayer coupling. Consequently, strain can be employed to tune the in-plane pseudo-spin texture, while interlayer bias tunes the out-of-plane pseudo-spin, and we show how the moiré magnetic field's spatial profile, intensity, and flux per supercell can be engineered. Through the geometric scalar correction, the landscape of the scalar potential can also be engineered along with the moiré magnetic field, forming distinct effective lattice structures. These properties render TMD moiré structures promising to build tunable flux lattices for transport and topological material applications.