论文标题

在伯格曼空间上紧凑型toeplitz操作员的光谱特性,具有对数腐烂的符号和对带矩阵的应用

On spectral properties of compact Toeplitz operators on Bergman space with logarithmically decaying symbol and applications to banded matrices

论文作者

Koita, Mahamet, Kupin, Stanislas, Naboko, Sergey, Touré, Belco

论文摘要

令$ l^2(d)$为单元磁盘上可测量的正方形功能的空间。令$ l^2_a(d)$为Bergman Space,即$ l^2(d)$中的分析功能的(封闭)子空间。 $ p _+$ $ $用于正交投影,从$ l^2(d)$到$ l^2_a(d)$。对于功能$φ\在l^\ infty(d)$中,toeplitz运算符$t_φ:l^2_a(d)\ to l^2_a(d)$定义为$$ t_或t_φf= p_+φf,\ quad f \ quad f \ quad f \ in l^2_a(d)。 $$本文的主要结果是光谱渐近学用于带有对数衰减符号的紧凑型toeplitz运算符的奇异(或特征)值,即$$φ(z)=φ_1(e^{i^{iθ}}) $ z = re^{iθ} $和$φ_1$是单位圆上的连续(或零件连续)功能。结果应用于带(包括雅各比)矩阵的光谱分析。

Let $L^2(D)$ be the space of measurable square-summable functions on the unit disk. Let $L^2_a(D)$ be the Bergman space, i.e., the (closed) subspace of analytic functions in $L^2(D)$. $P_+$ stays for the orthogonal projection going from $L^2(D)$ to $L^2_a(D)$. For a function $φ\in L^\infty(D)$, the Toeplitz operator $T_φ: L^2_a(D)\to L^2_a(D)$ is defined as $$ T_φf=P_+φf, \quad f\in L^2_a(D). $$ The main result of this article are spectral asymptotics for singular (or eigen-) values of compact Toeplitz operators with logarithmically decaying symbols, that is $$ φ(z)=φ_1(e^{iθ})\, (1+\log(1/(1-r)))^{-γ},\quad γ>0, $$ where $z=re^{iθ}$ and $φ_1$ is a continuous (or piece-wise continuous) function on the unit circle. The result is applied to the spectral analysis of banded (including Jacobi) matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源