论文标题

双曲线三角形和曾经是圆环组的形状

Shapes of hyperbolic triangles and once-punctured torus groups

论文作者

Kim, Sang-hyun, Koberda, Thomas, Lee, Jaejeong, Ohshika, Ken'ichi, Tan, Ser Peow, Gao, with an appendix by Xinghua

论文摘要

令$δ$为具有固定面积$φ$的双曲线三角形。我们证明,对于所有$δ$的通用选择,对于所有$δ$的通用选择而言,$π$产生的属性 - 围绕三角形侧面的中点旋转,没有承认非平凡的关系。相比之下,我们显示了所有$φ\ in(0,π)\ setMinus \ mathbb {q}π$,一组密集的三角形确实提供了非平凡关系,在通用案例映射到双曲线翻译中。为了确定这一事实,我们研究了一个圆锥形$θ= 2(π-φ)$的奇异双曲线指标的变形空间$ \ mathfrak {c}_θ$,并回答一个多重质量结构$ξ$ $ρ_$ρ_P的类似问题。在X.的附录中,给出了$θ$的具体示例和$ Mathfrak in \ Mathfrak {c}_θ$的具体示例,而每个$ρ_PON$的图像有限地呈现,不免费和免费扭转;实际上,这些图像对于封闭的双曲线3 - manifolds的基本组将是同构。

Let $Δ$ be a hyperbolic triangle with a fixed area $φ$. We prove that for all but countably many $φ$, generic choices of $Δ$ have the property that the group generated by the $π$--rotations about the midpoints of the sides of the triangle admits no nontrivial relations. By contrast, we show for all $φ\in(0,π)\setminus\mathbb{Q}π$, a dense set of triangles does afford nontrivial relations, which in the generic case map to hyperbolic translations. To establish this fact, we study the deformation space $\mathfrak{C}_θ$ of singular hyperbolic metrics on a torus with a single cone point of angle $θ=2(π-φ)$, and answer an analogous question for the holonomy map $ρ_ξ$ of such a hyperbolic structure $ξ$. In an appendix by X.~Gao, concrete examples of $θ$ and $ξ\in\mathfrak{C}_θ$ are given where the image of each $ρ_ξ$ is finitely presented, non-free and torsion-free; in fact, those images will be isomorphic to the fundamental groups of closed hyperbolic 3--manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源