论文标题

carnot组的本质上具有正常目标的Lipschitz函数

Intrinsically Lipschitz functions with normal target in Carnot groups

论文作者

Antonelli, Gioacchino, Merlo, Andrea

论文摘要

我们为本质上Lipschitz函数提供了一个rademacher定理$ ϕ:u \ subseteq \ mathbb w \ to \ mathbb l $,其中$ u $是borel set,$ \ mathbb w $ and $ \ mathbb l $是carnot群体的互补子群,我们需要$ \ iS $ \ iS a $。例如,当$ \ mathbb w $是水平亚组时,我们的假设得到满足。此外,我们为这类本质上的Lipschitz功能提供了一个区域公式。

We provide a Rademacher theorem for intrinsically Lipschitz functions $ϕ:U\subseteq \mathbb W\to \mathbb L$, where $U$ is a Borel set, $\mathbb W$ and $\mathbb L$ are complementary subgroups of a Carnot group, where we require that $\mathbb L$ is a normal subgroup. Our hypotheses are satisfied for example when $\mathbb W$ is a horizontal subgroup. Moreover, we provide an area formula for this class of intrinsically Lipschitz functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源