论文标题
双波长的阿尔玛观察原星盘中的灰尘环
Dual-Wavelength ALMA Observations of Dust Rings in Protoplanetary Disks
论文作者
论文摘要
我们提出了新的Atacama大毫米/亚毫升阵列(ALMA)观察,该观察值是金牛座在2.9 \,mm上的三个原球电磁盘,并且与先前的1.3 \,MM数据的比较都以$ \ sim0的角度分辨率为$ \ sim0。在单环磁盘DS TAU,双环磁盘GO TAU和多环磁盘DL TAU中,在两个波长处都检测到相同的环,径向位置范围从50到120 \,AU。为了量化灰尘发射形态,观察到的可见性用径向强度曲线的参数处方进行建模。磁盘外半径为模型强度曲线包围的总通量的95%,在两个磁盘的两个波长下都是一致的。尘埃演化模型表明,外磁盘中局部压力最大值中的灰尘诱捕可以解释观察到的模式。灰尘戒指大多未解决。 DS TAU中的边缘分辨环在较长的波长处显示了一个暂时较窄的环,这是有效的灰尘诱捕的观察性特征。频谱指数($α_ {\ rm mm} $)向外增加,并表现出与灰尘环峰相对应的局部最小值,这表明整个磁盘上粒度的变化。灰尘环的低光学深度($τ\ sim $ 0.1--0.2 at 2.9 \,mm和0.2--0.4 at 1.3 \,mm)表明,环中的晶粒可能已经长到毫米大小。原星盘中无处不在的灰尘环修改了粉尘晶粒的整体动力和演变,可能为新一代星球形成铺平了道路。
We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations for three protoplanetary disks in Taurus at 2.9\,mm and comparisons with previous 1.3\,mm data both at an angular resolution of $\sim0.''1$ (15\,au for the distance of Taurus). In the single-ring disk DS Tau, double-ring disk GO Tau, and multiple-ring disk DL Tau, the same rings are detected at both wavelengths, with radial locations spanning from 50 to 120\,au. To quantify the dust emission morphology, the observed visibilities are modeled with a parametric prescription for the radial intensity profile. The disk outer radii, taken as 95\% of the total flux encircled in the model intensity profiles, are consistent at both wavelengths for the three disks. Dust evolution models show that dust trapping in local pressure maxima in the outer disk could explain the observed patterns. Dust rings are mostly unresolved. The marginally resolved ring in DS Tau shows a tentatively narrower ring at the longer wavelength, an observational feature expected from efficient dust trapping. The spectral index ($α_{\rm mm}$) increases outward and exhibits local minima that correspond to the peaks of dust rings, indicative of the changes in grain properties across the disks. The low optical depths ($τ\sim$0.1--0.2 at 2.9\,mm and 0.2--0.4 at 1.3\,mm) in the dust rings suggest that grains in the rings may have grown to millimeter sizes. The ubiquitous dust rings in protoplanetary disks modify the overall dynamics and evolution of dust grains, likely paving the way towards the new generation of planet formation.