论文标题

黎曼叶叶的叶子闭合:杀死叶子的拓扑和几何方面的调查

Leaf closures of Riemannian foliations: a survey on topological and geometric aspects of Killing foliations

论文作者

Alexandrino, Marcos M., Caramello Jr, Francisco C.

论文摘要

当叶子在局部等距时,光滑的叶子是riemannian。在简单地连接的歧管上,或更一般地杀死叶子的叶子的叶子的封闭是通过横向杀死矢量场的流动来描述的。这在研究这类叶子的研究中具有重要的技术优势,尽管如此,这些叶子包括其他重要类,例如等距谎言小组行动的轨道所给出的类别。针对广泛的受众,在这项调查中,我们介绍了基础知识中的杀戮叶子,首先要简要修改该理论中出现的主要物体,例如伪群,滑轮,全能和基本的共同体。然后,我们回顾了莫利诺(Molino)的riemannian叶子结构理论,并在异构体的完整伪群中提出了其横向对应物,并强调了这些主题之间的联系。我们还调查了一些经典结果和杀死叶子理论的最新发展。最后,我们回顾了一些奇异的里曼植物理论中的一些主题,并讨论了奇异的杀戮叶子。

A smooth foliation is Riemannian when its leaves are locally equidistant. The closures of the leaves of a Riemannian foliation on a simply connected manifold, or more generally of a Killing foliation, are described by flows of transverse Killing vector fields. This offers significant technical advantages in the study of this class of foliations, which nonetheless includes other important classes, such as those given by the orbits of isometric Lie group actions. Aiming at a broad audience, in this survey we introduce Killing foliations from the very basics, starting with a brief revision of the main objects appearing in this theory, such as pseudogroups, sheaves, holonomy and basic cohomology. We then review Molino's structural theory for Riemannian foliations and present its transverse counterpart in the theory of complete pseudogroups of isometries, emphasizing the connections between these topics. We also survey some classical results and recent developments in the theory of Killing foliations. Finally, we review some topics in the theory of singular Riemannian foliations and discuss singular Killing foliations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源