论文标题
有限的土地原则
Finite-time Landauer principle
论文作者
论文摘要
我们研究了与在有限的时间内擦除一点点信息相关的热力学成本。我们提出了一个一般框架,以最大程度地减少对系统微骨的完全控制所需的平均工作。除了确切的数值结果外,我们还发现与与位状态相关的微观分布的方差成比例的简单界限。在短时限制中,我们将获得删除所需的最小工作量的封闭表达式。与最佳协议相关的平均工作可以达到四个较小的因素,而相对于局部均衡结束的协议的较小。根据启发式方案评估先前的实验和数值结果,我们发现我们的边界通常会消散能量的数量级。
We study the thermodynamic cost associated with the erasure of one bit of information over a finite amount of time. We present a general framework for minimizing the average work required when full control of a system's microstates is possible. In addition to exact numerical results, we find simple bounds proportional to the variance of the microscopic distribution associated with the state of the bit. In the short-time limit, we get a closed expression for the minimum average amount of work needed to erase a bit. The average work associated with the optimal protocol can be up to a factor of four smaller relative to protocols constrained to end in local equilibrium. Assessing prior experimental and numerical results based on heuristic protocols, we find that our bounds often dissipate an order of magnitude less energy.