论文标题

由Hurwitz和周期性Zeta函数组成的ZETA函数的值

The values of zeta functions composed by the Hurwitz and periodic zeta functions at integers

论文作者

Nakamura, Takashi

论文摘要

对于$ s \ in {\ mathbb {c}} $和$ 0 <a <1 $,让$ζ(s,a)$和$ {\ rm {li}} _ s(e^{2πia})$ be hurwitz和定期zeta函数。对于$ 0 <a \ le 1/2 $,put $ z(s,a):=ζ(s,a) +ζ(s,1-a)$,$ p(s,a):= {\ rm {li}} _ s(e^{2πia}) $ y(s,a):=ζ(s,a) - ζ(s,1 -a)$和$ o(s,a):= -i \ bigl({\ rm {li}} _ s(e^{2πia}) - 令$ n \ ge 0 $为整数,$ b:= r/q $,其中$ q> r> 0 $是coprime整数。在本文中,我们证明了$ z(-n,b)$,$π^{ - 2n-2} p(2n+2,b)$,$ y(-n,b)$和$π^{ - 2n-1} o(2n+1,b)$是合理数字,另外,此外,$π^{ - 2n-2} $ 2n-2} $ 2n-2} $(B) $π^{ - 2n-1} y(2n+1,b)$和$ o(-n,b)$是$ \ cos(2π/q)$的多项式和$ \ sin(2π/q)$,具有理性系数。此外,我们表明$ z(-n,a)$,$π^{ - 2n-2} p(2n+2,a)$,$ y(-n,a)$和$π^{ - 2n-1} o(2n+1,a)是$ 0 <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a <a的, z(2n+2,a)$,$ p(-n,a)$,$π^{ - 2n-1} y(2n+1,a)$和$ o(-n,a)$是具有合理系数的$ \ exp(2πia)$的合理函数。请注意,上述有理数,多项式和有理功能是明确给出的。 此外,我们表明$ p(s,a)\ equiv 0 $ for ahl $ 0 <a <1/2 $时,仅当$ s $是一个负数甚至整数。我们还证明了$ z(s,a)$,$ y(s,a)$,$ o(s,a)$等的类似断言。此外,我们证明函数$ z(s,| a |)$作为某些固定自相似的高斯分布的光谱密度出现。

For $s \in {\mathbb{C}}$ and $0 < a <1$, let $ζ(s,a)$ and ${\rm{Li}}_s (e^{2πia})$ be the Hurwitz and periodic zeta functions, repectively. For $0 < a \le 1/2$, put $Z(s,a) := ζ(s,a) + ζ(s,1-a)$, $P(s,a) := {\rm{Li}}_s (e^{2πia}) + {\rm{Li}}_s (e^{2πi(1-a)})$, $Y(s,a) := ζ(s,a) - ζ(s,1-a)$ and $O(s,a):= -i \bigl( {\rm{Li}}_s (e^{2πia}) - {\rm{Li}}_s (e^{2πi(1-a)}) \bigr)$. Let $n \ge 0$ be an integer and $b := r/q$, where $q>r>0$ are coprime integers. In this paper, we prove that the values $Z(-n,b)$, $π^{-2n-2} P(2n+2,b)$, $Y(-n,b)$ and $π^{-2n-1} O(2n+1,b)$ are rational numbers, in addition, $π^{-2n-2} Z(2n+2,b)$, $P(-n,b)$, $π^{-2n-1} Y(2n+1,b)$ and $O(-n,b)$ are polynomials of $\cos (2π/q)$ and $\sin (2π/q)$ with rational coefficients. Furthermore, we show that $Z(-n,a)$, $π^{-2n-2} P(2n+2,a)$, $Y(-n,a)$ and $π^{-2n-1} O(2n+1,a)$ are polynomials of $0<a<1$ with rational coefficient, in addition, $π^{-2n-2} Z(2n+2,a)$, $P(-n,a)$, $π^{-2n-1} Y(2n+1,a)$ and $O(-n,a)$ are rational functions of $\exp (2 πia)$ with rational coefficients. Note that the rational numbers, polynomials and rational functions mentioned above are given explicitly. Moreover, we show that $P(s,a) \equiv 0$ for all $ 0 < a < 1/2$ if and only if $s$ is a negative even integer. We also prove similar assertions for $Z(s,a)$, $Y(s,a)$, $O(s,a)$ and so on. In addition, we prove that the function $Z(s,|a|)$ appears as the spectral density of some stationary self-similar Gaussian distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源