论文标题

MIM:一种用于求解高阶偏微分方程的深层残留方法

MIM: A deep mixed residual method for solving high-order partial differential equations

论文作者

Lyu, Liyao, Zhang, Zhen, Chen, Minxin, Chen, Jingrun

论文摘要

近年来,通过深度学习,已经引起了大量关注以解决部分微分方程(PDE)。例如,Deep Galerkin方法(DGM)将PDE残留在最小二型的感觉中用作损耗函数和深神经网络(DNN)来近似PDE解决方案。在这项工作中,我们提出了一种深层混合残留方法(MIM),以求解具有高阶导数的PDE。在MIM中,我们首先将高级PDE重写为一阶系统,在PDES经典数值方法中,与局部不连续的Galerkin方法和混合有限元方法非常相同。然后,我们将一阶系统的残差作为最小二乘感应作为损耗函数,该函数与最小二乘有限元方法密切相关。对于上述经典数值方法,在许多情况下,跟踪和测试功能的选择对于稳定性和准确性问题很重要。当使用DNN来近似一阶系统中的未知功能时,MIM共享此属性。在一种情况下,我们使用几乎相同的DNN来近似所有未知功能,在另一种情况下,我们使用完全不同的DNN来用于不同的未知功能。在大多数情况下,MIM比具有几乎相同的DNN和相同执行时间的DGM提供了更好的近似值(不仅适用于PDE解决方案的高衍生物,而且对于PDE解决方案本身,也提供了更好的近似值)。当使用不同的DNN时,在许多情况下,MIM提供的近似值甚至比仅具有一个DNN的MIM更好,有时甚至是一个以上的数量级。因此,我们希望MIM从经典的数值分析的角度开放一种可能系统的方法来理解和改善深度学习以解决PDE。

In recent years, a significant amount of attention has been paid to solve partial differential equations (PDEs) by deep learning. For example, deep Galerkin method (DGM) uses the PDE residual in the least-squares sense as the loss function and a deep neural network (DNN) to approximate the PDE solution. In this work, we propose a deep mixed residual method (MIM) to solve PDEs with high-order derivatives. In MIM, we first rewrite a high-order PDE into a first-order system, very much in the same spirit as local discontinuous Galerkin method and mixed finite element method in classical numerical methods for PDEs. We then use the residual of first-order system in the least-squares sense as the loss function, which is in close connection with least-squares finite element method. For aforementioned classical numerical methods, the choice of trail and test functions is important for stability and accuracy issues in many cases. MIM shares this property when DNNs are employed to approximate unknowns functions in the first-order system. In one case, we use nearly the same DNN to approximate all unknown functions and in the other case, we use totally different DNNs for different unknown functions. In most cases, MIM provides better approximations (not only for high-derivatives of the PDE solution but also for the PDE solution itself) than DGM with nearly the same DNN and the same execution time, sometimes by more than one order of magnitude. When different DNNs are used, in many cases, MIM provides even better approximations than MIM with only one DNN, sometimes by more than one order of magnitude. Therefore, we expect MIM to open up a possibly systematic way to understand and improve deep learning for solving PDEs from the perspective of classical numerical analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源