论文标题
本体学介导的查询的四次切开术,覆盖公理
A tetrachotomy of ontology-mediated queries with a covering axiom
论文作者
论文摘要
我们担心的是有效确定通过描述逻辑本体介导的查询并构建其最佳重写对标准数据库查询的数据复杂性的问题。该问题起源于基于本体的数据访问和数据访问优化,通常在计算上非常复杂,没有明确的句法特征。在本文中,旨在了解这种困难的基本根源,我们将问题剥离到裸露的骨头上,并专注于由简单覆盖的Axiom介导的布尔连接性查询,指出一个班级被另外两个班级的结合所涵盖。我们表明,一方面,这些基本的本体论介导的查询称为脱节的sirups(或d-sirups),捕获了一般情况的许多特征和困难。例如,对于组合复杂性,回答D-sirup是P_2固定的,并且可以在AC0或LogSpace-,NL-,P-或Conp-Complete中用于数据复杂性(由于识别D-Sirups的FO-剥削性的问题是2Exptime-Hard);某些D-SIRUPS仅具有指数尺寸的分辨率证明,一些仅具有双指数尺寸的正面存在FO-脱螺旋和单个指数尺寸的非转换数据Alog重写。另一方面,我们证明了一些d-sirups的fo-和(对称/线性 - 线性)数据核能重写的部分条件。我们的主要技术结果是完整而透明的句法AC0/NL/P/P/Conp d-Sirups的四次切开术,覆盖了类别,并且是路径形的布尔相结合查询。为了获得这种四次切开术,我们开发了建立p和conp-固定性的新技术,以回答非本体论介导的查询,并表明它们可以在NL中得到回答。
Our concern is the problem of efficiently determining the data complexity of answering queries mediated by description logic ontologies and constructing their optimal rewritings to standard database queries. Originated in ontology-based data access and datalog optimisation, this problem is known to be computationally very complex in general, with no explicit syntactic characterisations available. In this article, aiming to understand the fundamental roots of this difficulty, we strip the problem to the bare bones and focus on Boolean conjunctive queries mediated by a simple covering axiom stating that one class is covered by the union of two other classes. We show that, on the one hand, these rudimentary ontology-mediated queries, called disjunctive sirups (or d-sirups), capture many features and difficulties of the general case. For example, answering d-sirups is Pi^p_2-complete for combined complexity and can be in AC0 or LogSpace-, NL-, P-, or coNP-complete for data complexity (with the problem of recognising FO-rewritability of d-sirups being 2ExpTime-hard); some d-sirups only have exponential-size resolution proofs, some only double-exponential-size positive existential FO-rewritings and single-exponential-size nonrecursive datalog rewritings. On the other hand, we prove a few partial sufficient and necessary conditions of FO- and (symmetric/linear-) datalog rewritability of d-sirups. Our main technical result is a complete and transparent syntactic AC0/NL/P/coNP tetrachotomy of d-sirups with disjoint covering classes and a path-shaped Boolean conjunctive query. To obtain this tetrachotomy, we develop new techniques for establishing P- and coNP-hardness of answering non-Horn ontology-mediated queries as well as showing that they can be answered in NL.