论文标题

机器人运动计划使用学识渊博的资料来源和本地抽样

Robotic Motion Planning using Learned Critical Sources and Local Sampling

论文作者

Jenamani, Rajat Kumar, Kumar, Rahul, Mall, Parth, Kedia, Kushal

论文摘要

基于抽样的方法广泛用于机器人运动计划。传统上,这些样本是从概率(或确定性)分布中绘制的,以统一覆盖状态空间。尽管概率是完整的,但他们在受约束的环境中未能在合理的时间内找到可行的路径,在这种情况下,必须经过狭窄的通道(瓶颈区域)。当前的艺术技术训练学习模型(学习者)在这些瓶颈地区有选择地预测样本。但是,这些算法完全取决于该学习者生成的样本,以导航瓶颈区域。随着计划问题的复杂性增加,使该学习者鲁棒的数据和时间的数量在工作空间结构上的良好变化变得棘手。在这项工作中,我们提出了一种有效且可靠的方法,可以使用学习者来定位瓶颈区域,以及(2)两种算法使用局部抽样方法来利用这些瓶颈区域的位置,以进行有效的运动计划,同时保持概率完整。 我们在2维计划问题和7个维度机器人的ARM计划上测试了算法,并报告了对启发式方法以及学习的基线的巨大收益。

Sampling based methods are widely used for robotic motion planning. Traditionally, these samples are drawn from probabilistic ( or deterministic ) distributions to cover the state space uniformly. Despite being probabilistically complete, they fail to find a feasible path in a reasonable amount of time in constrained environments where it is essential to go through narrow passages (bottleneck regions). Current state of the art techniques train a learning model (learner) to predict samples selectively on these bottleneck regions. However, these algorithms depend completely on samples generated by this learner to navigate through the bottleneck regions. As the complexity of the planning problem increases, the amount of data and time required to make this learner robust to fine variations in the structure of the workspace becomes computationally intractable. In this work, we present (1) an efficient and robust method to use a learner to locate the bottleneck regions and (2) two algorithms that use local sampling methods to leverage the location of these bottleneck regions for efficient motion planning while maintaining probabilistic completeness. We test our algorithms on 2 dimensional planning problems and 7 dimensional robotic arm planning, and report significant gains over heuristics as well as learned baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源