论文标题
在某些保留分区的转换的半群上
On certain Semigroups of Transformations that preserve a partition
论文作者
论文摘要
令$ x $为非发行集,然后让$ \ Mathcal {t} _x $为$ x $上的完整转换半群。对于一个分区$ \ MATHCAL {p} = \ {x_i \; | \;; i \ in i \} $ of $ x $,我们考虑semigroup $ t(x,\ mathcal {p})= \ {f \ in \ mathcal {t} _x \; | \; | \; \ forall x_i \; \存在x_j,\; x_i f \ subSeteq x_j \} $,subsemigroup $σ(x,x,\ nathcal {p})= \ {f \ in t(x,x,x,\ mathcal {p})\; | \; | \; xf \ cap x_i \ neq \ emptyset \; \ forall x_i \} $,以及$ t(x,x,\ mathcal {p})$的单位$ s(x,\ mathcal {p})$。在本文中,我们首先表征了$σ(x,\ mathcal {p})$的元素。对于有限的$ x $的排列$ f $,我们接下来观察到$ x $的非平凡分区$ \ mathcal {p} $,使得s(x,\ mathcal {p})中的$ f \ y。然后,我们分别为任意和有限的$ x $表征并枚举semigroup $σ(x,\ mathcal {p})$中的iDempotents。我们还表征了$ s(x,\ mathcal {p})$的元素。对于有限的$ x $,我们最终计算了$ t(x,\ mathcal {p})$,$σ(x,x,x,\ mathcal {p})$和$ s(x,x,x,\ mathcal {p})$的基数。
Let $X$ be a nonempty set, and let $\mathcal{T}_X$ be the full transformation semigroup on $X$. For a partition $\mathcal{P} = \{X_i \;|\; i\in I\}$ of $X$, we consider the semigroup $T(X, \mathcal{P}) = \{f\in \mathcal{T}_X\;|\; \forall X_i\;\exists X_j,\; X_i f \subseteq X_j\}$, the subsemigroup $Σ(X, \mathcal{P}) = \{f\in T(X, \mathcal{P})\;|\; Xf \cap X_i \neq \emptyset\; \forall X_i\}$, and the group of units $S(X, \mathcal{P})$ of $T(X, \mathcal{P})$. In this paper, we first characterize the elements of $Σ(X, \mathcal{P})$. For a permutation $f$ of finite $X$, we next observe whether there exists a nontrivial partition $\mathcal{P}$ of $X$ such that $f\in S(X, \mathcal{P})$. We then characterize and enumerate the idempotents in the semigroup $Σ(X, \mathcal{P})$ for arbitrary and finite $X$, respectively. We also characterize the elements of $S(X, \mathcal{P})$. For finite $X$, we finally calculate the cardinality of $T(X, \mathcal{P})$, $Σ(X, \mathcal{P})$, and $S(X, \mathcal{P})$.