论文标题

SchrödingerPCA:主成分分析与Schrödinger方程之间的双重性

Schrödinger PCA: On the Duality between Principal Component Analysis and Schrödinger Equation

论文作者

Liu, Ziming, Qian, Sitian, Wang, Yixuan, Yan, Yuxuan, Yang, Tianyi

论文摘要

主成分分析(PCA)通过识别特征之间的协方差相关性,在无监督学习方面取得了巨大成功。如果数据收集未能捕获协方差信息,则PCA将无法发现有意义的模式。特别是,PCA将使在不足采样方面的空间高斯过程(GP)模型失败,即相邻锚点的平均距离(空间特征)大于GP的相关长度。违反直觉,通过绘制PCA和Schrödinger方程之间的连接,我们不仅可以攻击底面采样挑战,而且还可以使用称为SchrödingerPCA的建议算法以有效而脱钩的方式计算。我们的算法仅需要特征的差异和估计的相关长度作为输入,构造相应的schrödinger方程,并解决该方程以获得与主成分相一致的能量特征态。我们还将在部分微分方程(PDE)社区中建立算法与模型还原技术的连接,在该方程(PDE)社区中,稳态Schrödinger运算符被确定为与协方差函数的二阶近似。实施数值实验以证明所提出的算法的有效性和效率,显示了其在一般图和歧管上无监督学习任务的潜力。

Principal component analysis (PCA) has achieved great success in unsupervised learning by identifying covariance correlations among features. If the data collection fails to capture the covariance information, PCA will not be able to discover meaningful modes. In particular, PCA will fail the spatial Gaussian Process (GP) model in the undersampling regime, i.e. the averaged distance of neighboring anchor points (spatial features) is greater than the correlation length of GP. Counterintuitively, by drawing the connection between PCA and Schrödinger equation, we can not only attack the undersampling challenge but also compute in an efficient and decoupled way with the proposed algorithm called Schrödinger PCA. Our algorithm only requires variances of features and estimated correlation length as input, constructs the corresponding Schrödinger equation, and solves it to obtain the energy eigenstates, which coincide with principal components. We will also establish the connection of our algorithm to the model reduction techniques in the partial differential equation (PDE) community, where the steady-state Schrödinger operator is identified as a second-order approximation to the covariance function. Numerical experiments are implemented to testify the validity and efficiency of the proposed algorithm, showing its potential for unsupervised learning tasks on general graphs and manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源