论文标题
Avramov-Martsinkovsky类型的外侧类别的精确序列
Avramov-Martsinkovsky type exact sequences for extriangulated categories
论文作者
论文摘要
令$(\ Mathcal {C},\ Mathbb {e},\ Mathfrak {s})$为一个外部缝制类别,具有适当的类$之一的$ \ Mathbb {e} $ - 三角形。在本文中,我们首先以$ξ$ - $ \ $ \ MATHCAL {G} $投影分辨率和$ξ$ - $ \ MATHCAL {G} $ Injextive Coresolutions,分别介绍$ξ$ -Gorenstein共同体学,然后我们获得$ -GorenStein Cohomology的余额。此外,我们研究了$ξ$ - 生物学之间的相互作用,$ξ$ -Gorenstein的共同体和$ξ$ -Complete Cromology,并在此设置中获得Avramov-Martsinkovsky类型的精确序列。
Let $(\mathcal{C},\mathbb{E},\mathfrak{s})$ be an extriangulated category with a proper class $ξ$ of $\mathbb{E}$-triangles. In this paper, we first introduce the $ξ$-Gorenstein cohomology in terms of $ξ$-$\mathcal{G}$projective resolutions and $ξ$-$\mathcal{G}$injective coresolutions, respectively, and then we get the balance of $ξ$-Gorenstein cohomology. Moreover, we study the interplay among $ξ$-cohomology, $ξ$-Gorenstein cohomology and $ξ$-complete cohomology, and obtain the Avramov-Martsinkovsky type exact sequences in this setting.