论文标题
Piven:具有特定价值预测的预测间隔的深神经网络
PIVEN: A Deep Neural Network for Prediction Intervals with Specific Value Prediction
论文作者
论文摘要
改善回归任务中神经网的鲁棒性是其在多个领域中应用的关键。基于深度学习的方法旨在通过改善其对特定值(即点预测)的预测或产生量化不确定性的预测间隔(PI)来实现这一目标。我们提出了Piven,这是一个深层神经网络,用于产生PI和价值预测。我们的损耗函数表达了值预测是上限和下限的函数,从而确保它落在间隔内而不会增加模型复杂性。此外,我们的方法对PI中的数据分布没有任何假设,从而使其价值预测对各种现实世界中的问题更有效。对已知基准测试的实验和消融测试表明,与当前生产PI的最新方法相比,我们的方法产生的不确定性范围更严格,同时保持了与最先进的价值预测方法可比的性能。此外,我们超越了以前的工作,并在评估中包括大型图像数据集,其中Piven与现代神经网络结合使用。
Improving the robustness of neural nets in regression tasks is key to their application in multiple domains. Deep learning-based approaches aim to achieve this goal either by improving their prediction of specific values (i.e., point prediction), or by producing prediction intervals (PIs) that quantify uncertainty. We present PIVEN, a deep neural network for producing both a PI and a value prediction. Our loss function expresses the value prediction as a function of the upper and lower bounds, thus ensuring that it falls within the interval without increasing model complexity. Moreover, our approach makes no assumptions regarding data distribution within the PI, making its value prediction more effective for various real-world problems. Experiments and ablation tests on known benchmarks show that our approach produces tighter uncertainty bounds than the current state-of-the-art approaches for producing PIs, while maintaining comparable performance to the state-of-the-art approach for value-prediction. Additionally, we go beyond previous work and include large image datasets in our evaluation, where PIVEN is combined with modern neural nets.