论文标题
多光谱面部标志性检测
Multi-spectral Facial Landmark Detection
论文作者
论文摘要
热面图像分析有利于某些情况。例如,对照明敏感的应用,例如夜间监视;和保护隐私要求访问控制。但是,对热面部图像分析的研究不足,需要在响应行业要求时注意。检测面部地标点对于许多面部分析任务,例如面部识别,3D面部重建和面部表情识别很重要。在本文中,我们提出了一个强大的神经网络启用面部标志性检测,即深度多光谱学习(DMSL)。简而言之,DMSL由两个子模型组成,即面部边界检测和地标坐标检测。这种结构证明了在可见图像和热图像上都检测面部地标的能力。特别是,所提出的DMSL模型在面部的面部标志性检测方面具有鲁棒性,该检测部分被部分遮挡,或面对不同的方向。该实验是在Eurecom的可见和热配对数据库上进行的,该实验表明,用于热面部标记检测的DMSL优于最先进的表现。除此之外,我们还注释了一个带有其各自面部标志的热面数据集,以进行实验。
Thermal face image analysis is favorable for certain circumstances. For example, illumination-sensitive applications, like nighttime surveillance; and privacy-preserving demanded access control. However, the inadequate study on thermal face image analysis calls for attention in responding to the industry requirements. Detecting facial landmark points are important for many face analysis tasks, such as face recognition, 3D face reconstruction, and face expression recognition. In this paper, we propose a robust neural network enabled facial landmark detection, namely Deep Multi-Spectral Learning (DMSL). Briefly, DMSL consists of two sub-models, i.e. face boundary detection, and landmark coordinates detection. Such an architecture demonstrates the capability of detecting the facial landmarks on both visible and thermal images. Particularly, the proposed DMSL model is robust in facial landmark detection where the face is partially occluded, or facing different directions. The experiment conducted on Eurecom's visible and thermal paired database shows the superior performance of DMSL over the state-of-the-art for thermal facial landmark detection. In addition to that, we have annotated a thermal face dataset with their respective facial landmark for the purpose of experimentation.