论文标题
使用RT-ICM MMWave簇的均匀平面阵列(UPA)的梁宽度选择
Beamwidth Selection for a Uniform Planar Array (UPA) Using RT-ICM mmWave Clusters
论文作者
论文摘要
波束形成是克服毫米波(MMWAVE)通道中高路径损失的主要技术。因此,绩效改善需要对空间领域的知识和控制。特别是,天线结构和辐射参数会影响MMWave通信系统中的光束性能。为了解决诸如梁未对准,中断损失,跟踪无能,阻塞等障碍,必须确定梁宽的最佳值。在我们的上一篇论文中,假设一个通信系统每一个群集创建光束,我们从理论上研究了群集级别MMWave通道中的Beam Width Recepedth Rectective的功率关系。我们在分析中使用了均匀的线性阵列(ULA)天线。在本文中,我们对分析进行了重新访问,并更新了使用矩形统一平面阵列(R-UPA)天线的方案的表达式。矩形束模型被认为近似于天线的主叶图。对于该通道,我们为两个群集内通道模型,IEEE 802.11AD和我们先前基于射线追踪(RT-ICM)的工作得出了梁宽依赖的提取功率表达式。结合天线和通道增长,如果是完美的对齐,我们确认最佳梁宽度会收敛零。对接收能力进行渐近分析,我们给出了表述和见解,即尽管从最大接收的功率中牺牲了微妙的微妙,可以实现实用的非零梁宽值。我们的分析表明,要达到典型的室内MMWave簇的最大功率的95%,实际的梁宽为3.5度就足够了。最后,我们的分析结果表明,当ULA使用UPA时,最大理论接收的功率增加了13 dB。我们表明,8 x 8 UPA可以达到最大接收功率的50%,而接收的功率仍然比ULA方案大10 dB。
Beamforming is the primary technology to overcome the high path loss in millimeter-wave (mmWave) channels. Hence, performance improvement needs knowledge and control of the spatial domain. In particular, antenna structure and radiation parameters affect the beamforming performance in mmWave communications systems. In order to address the impairments such as beam misalignments, outage loss, tracking inability, blockage, etc., an optimum value of the beamwidth must be determined. In our previous paper, assuming a communication system that creates a beam per cluster, we theoretically investigated the beamwidth-received power relation in the cluster level mmWave channels. We used uniform linear array (ULA) antenna in our analysis. In this paper, we revisit the analysis and update the expressions for the scenario where we use rectangular uniform planar array (R-UPA) antenna. Rectangular beam model is considered to approximate the main lobe pattern of the antenna. For the channel, we derive beamwidth-dependent extracted power expressions for two intra-cluster channel models, IEEE 802.11ad and our previous work based on ray-tracing (RT-ICM). Combining antenna and channel gains, in case of the perfect alignment, we confirm that the optimum beamwidth converges zero. Performing asymptotic analysis of the received power, we give the formulation and insights that the practical nonzero beamwidth values can be achieved although sacrificing subtle from the maximum received power. Our analysis shows that to reach 95% of the maximum power for a typical indoor mmWave cluster, a practical beamwidth of 3.5 deg is enough. Finally, our analysis results show that there is a 13 dB increase in the maximum theoretical received power when UPA is used over ULA. We show that an 8 x 8 UPA can reach 50% of that maximum received power while the received power is still 10 dB larger than the ULA scenario.