论文标题

使用局部基础函数,在实时时间依赖性密度函数理论中嵌入冷冻密度的环境效应

Environmental effects with Frozen Density Embedding in Real-Time Time-Dependent Density Functional Theory using localized basis functions

论文作者

De Santis, Matteo, Belpassi, Leonardo, Jacob, Christoph R., Gomes, André Severo Pereira, Tarantelli, Francesco, Visscher, Lucas, Storchi, Loriano

论文摘要

冷冻密度嵌入(FDE)代表了一种多功能嵌入方案,以描述分子系统中电子动力学的环境影响。以前在平面波和周期性边界条件下介绍并实施了FDE的一般理论向实时依赖时间依赖的Kohn-Sham方法的扩展(Pavanello等人J. Chem。142,154116,2015)。在当前的论文中,我们将最新的实时时间依赖性Kohn-Sham方法扩展到基于局部基集函数并在PSI4NUMPY框架内开发(De Santis等人J. Chem。理论计算2020,16,2410)。后者是在其“未耦合”风味中实施的(在该风味中仅针对活动子系统进行时间演变,而环境子系统保持在其基态下),并使用并调整了脚本框架PYADF的Pyembed模块中已经可用的FDE实现。 PSI4NUMPY和PYADF(作为本地Python API)都使用Python优势在代码可读性和可重复使用性方面提供了理想的开发框架,从而促进了实施。我们证明,FDE电势的包含不会在活动子系统的密度矩阵的时间传播中引入任何数值不稳定性,并且在弱外场的限制中,低较低过渡能量的数值结果与使用基于线性响应TDDDFT的参考FDE计算获得的低较低过渡能量是一致的。发现该方法在存在强大的外部场的情况下也产生了非线性效应,从而产生稳定的数值结果。

Frozen Density Embedding (FDE) represents a versatile embedding scheme to describe the environmental effect on the electron dynamics in molecular systems. The extension of the general theory of FDE to the real-time time-dependent Kohn-Sham method has previously been presented and implemented in plane-waves and periodic boundary conditions (Pavanello et al. J. Chem. Phys. 142, 154116, 2015). In the current paper, we extend our recent formulation of real-time time-dependent Kohn-Sham method based on localized basis set functions and developed within the Psi4NumPy framework (De Santis et al. J. Chem. Theory Comput. 2020, 16, 2410) to the FDE scheme. The latter has been implemented in its "uncoupled" flavor (in which the time evolution is only carried out for the active subsystem, while the environment subsystems remain at their ground state), using and adapting the FDE implementation already available in the PyEmbed module of the scripting framework PyADF. The implementation was facilitated by the fact that both Psi4NumPy and PyADF, being native Python API, provided an ideal framework of development using the Python advantages in terms of code readability and reusability. We demonstrate that the inclusion of the FDE potential does not introduce any numerical instability in time propagation of the density matrix of the active subsystem and in the limit of weak external field, the numerical results for low-lying transition energies are consistent with those obtained using the reference FDE calculations based on the linear response TDDFT. The method is found to give stable numerical results also in the presence of strong external field inducing non-linear effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源