论文标题

光学系统的深度加固学习:模式锁定激光器的案例研究

Deep reinforcement learning for optical systems: A case study of mode-locked lasers

论文作者

Sun, Chang, Kaiser, Eurika, Brunton, Steven L., Kutz, J. Nathan

论文摘要

我们证明,深度强化学习(DEEP RL)为控制和自调整的光学系统提供了高效的策略。 Deep RL整合了深神经网络的两个领先的机器学习体系结构,并增强了学习,以产生强大而稳定的学习来控制。 Deep RL非常适合光学系统,因为调整和控制依赖于与环境的相互作用,并以目标为导向的目标获得最佳的即时或延迟奖励。这使光学系统可以识别双稳定结构,并通过轨迹计划导航,从而最佳地执行解决方案,这是在光学系统中证明这样做的第一种算法。我们特别展示了模式锁定激光器上的深度RL架构,可以通过将深RL代理访问其波动板和极化器来建立强大的自我调整和控制。我们进一步整合转移学习,以帮助深度RL代理迅速学习新的参数制度并概括其控制权。此外,深度RL学习可以轻松地与其他控制范式集成,以提供一个广泛的框架来控制任何光学系统。

We demonstrate that deep reinforcement learning (deep RL) provides a highly effective strategy for the control and self-tuning of optical systems. Deep RL integrates the two leading machine learning architectures of deep neural networks and reinforcement learning to produce robust and stable learning for control. Deep RL is ideally suited for optical systems as the tuning and control relies on interactions with its environment with a goal-oriented objective to achieve optimal immediate or delayed rewards. This allows the optical system to recognize bi-stable structures and navigate, via trajectory planning, to optimally performing solutions, the first such algorithm demonstrated to do so in optical systems. We specifically demonstrate the deep RL architecture on a mode-locked laser, where robust self-tuning and control can be established through access of the deep RL agent to its waveplates and polarizers. We further integrate transfer learning to help the deep RL agent rapidly learn new parameter regimes and generalize its control authority. Additionally, the deep RL learning can be easily integrated with other control paradigms to provide a broad framework to control any optical system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源