论文标题
高维Heegaard浮子同源性的应用与拓扑联系
Applications of higher-dimensional Heegaard Floer homology to contact topology
论文作者
论文摘要
本文的目的是建立高维Heegaard Floer同源性的一般框架,定义接触类别,并使用它来阻止liouville的接触歧管填充能力,并有足够的条件使Weinstein猜想持有。我们讨论了几类示例,包括分析象征性Khovanov同源性的近乎表弟的示例,以及横向链路不变的Plamenevskaya的类似物。
The goal of this paper is to set up the general framework of higher-dimensional Heegaard Floer homology, define the contact class, and use it to give an obstruction to the Liouville fillability of a contact manifold and a sufficient condition for the Weinstein conjecture to hold. We discuss several classes of examples including those coming from analyzing a close cousin of symplectic Khovanov homology and the analog of the Plamenevskaya invariant of transverse links.