论文标题
使用深度学习的太阳风预测
Solar wind prediction using deep learning
论文作者
论文摘要
太阳风从太阳的电晕底部散发出来,填充了星际介质的带磁性的带电颗粒流,其与地球磁层的相互作用具有空间天气的后果,例如地磁风暴。通过测量太阳大气中的时空发展条件,准确地预测太阳风很重要,但在Heliophysics和太空天气研究中仍然是未解决的问题。 在这项工作中,我们使用深度学习来预测太阳风(SW)特性。我们使用从基于太空的观测值的太阳能电晕的极端紫外线图像来预测NASA OmniWeb数据集的SW速度,以Lagragian Point 1进行测量。我们对自动收益和天真模型的模型进行了评估,并发现我们的模型胜过基准模型,获得了0.55 $ $ \ $ \ $ 0.03的基准相关性。 在可视化和研究模型如何使用数据进行预测的情况下,我们发现在冠状孔的快风预测(预测前约$ 3至4天)以及在活动区域的较高激活,以进行缓慢的风预测。这些趋势与文献中报道的那样,与区域的影响可能是快速和缓慢的风能来源的不可思议的相似之处。这表明我们的模型能够在没有内置物理知识的情况下学习冠状和太阳风结构之间的一些显着关联。这样的方法可以帮助我们发现迄今为止在Heliophysics数据集中未知的关系。
Emanating from the base of the Sun's corona, the solar wind fills the interplanetary medium with a magnetized stream of charged particles whose interaction with the Earth's magnetosphere has space-weather consequences such as geomagnetic storms. Accurately predicting the solar wind through measurements of the spatio-temporally evolving conditions in the solar atmosphere is important but remains an unsolved problem in heliophysics and space-weather research. In this work, we use deep learning for prediction of solar wind (SW) properties. We use Extreme Ultraviolet images of the solar corona from space based observations to predict the SW speed from the NASA OMNIWEB dataset, measured at Lagragian point 1. We evaluate our model against autoregressive and naive models, and find that our model outperforms the benchmark models, obtaining a best-fit correlation of 0.55 $\pm$ 0.03 with the observed data. Upon visualization and investigation of how the model uses data to make predictions, we find higher activation at the coronal holes for fast wind prediction ($\approx$ 3 to 4 days prior to prediction), and at the active regions for slow wind prediction. These trends bear an uncanny similarity to the influence of regions potentially being the sources of fast and slow wind, as reported in literature. This suggests that our model was able to learn some of the salient associations between coronal and solar wind structure without built-in physics knowledge. Such an approach may help us discover hitherto unknown relationships in heliophysics datasets.