论文标题

通过注意力机制进行深度学习,以预测交叉路口的驾驶员意图

Deep Learning with Attention Mechanism for Predicting Driver Intention at Intersection

论文作者

Girma, Abenezer, Amsalu, Seifemichael, Workineh, Abrham, Khan, Mubbashar, Homaifar, Abdollah

论文摘要

在本文中,提出了驾驶员意图在道路交叉路口附近的意图预测。我们的方法使用基于混合状态系统(HSS)框架的注意机制模型的深双向长期记忆(LSTM)。由于十字路口被认为是道路事故的主要来源之一,因此预测交叉路口的驾驶员意图非常重要。我们的方法使用序列将与注意机制进行序列建模,从而有效利用时间序列的车辆数据,包括速度和偏航率。然后,该模型会提前预测目标车辆/驾驶员是否会直行,停止或向右或向左转弯。在自然主义的驾驶数据集上评估了所提出的方法的性能,结果表明,我们的方法可以达到高精度,并且表现优于其他方法。提出的解决方案有望应用于高级驾驶辅助系统(ADA),并作为自动驾驶汽车的主动安全系统的一部分。

In this paper, a driver's intention prediction near a road intersection is proposed. Our approach uses a deep bidirectional Long Short-Term Memory (LSTM) with an attention mechanism model based on a hybrid-state system (HSS) framework. As intersection is considered to be as one of the major source of road accidents, predicting a driver's intention at an intersection is very crucial. Our method uses a sequence to sequence modeling with an attention mechanism to effectively exploit temporal information out of the time-series vehicular data including velocity and yaw-rate. The model then predicts ahead of time whether the target vehicle/driver will go straight, stop, or take right or left turn. The performance of the proposed approach is evaluated on a naturalistic driving dataset and results show that our method achieves high accuracy as well as outperforms other methods. The proposed solution is promising to be applied in advanced driver assistance systems (ADAS) and as part of active safety system of autonomous vehicles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源