论文标题

Landsat-8和Proba-V图像的跨传感器对抗域适应云检测

Cross-Sensor Adversarial Domain Adaptation of Landsat-8 and Proba-V images for Cloud Detection

论文作者

Mateo-García, Gonzalo, Laparra, Valero, López-Puigdollers, Dan, Gómez-Chova, Luis

论文摘要

带有具有相似特性的光传感器的地球观测卫星的数量正在不断增长。尽管它们的相似性和潜在的协同作用,但经常为每个传感器开发衍生的卫星产品。检索到的辐射的差异会导致准确性显着下降,这阻碍了跨传感器的知识和信息共享。这对于机器学习算法尤其有害,因为将新的地面真相数据收集到每个传感器的训练模型都是昂贵的,并且需要经验丰富的人力。在这项工作中,我们提出了一个域的适应转换,以减少两个卫星传感器图像之间的统计差异,以提高转移学习模型的性能。所提出的方法基于循环一致的生成对抗结构域适应(Cycada)框架,该框架以不成对的方式训练转换模型。特别是,使用不同但兼容的时空特征的Landsat-8和Proba-V卫星用于说明该方法。所获得的转换显着降低了图像数据集之间的差异,同时保留了适应图像的空间和光谱信息,因此,这对于任何通用跨传感器应用都很有用。此外,可以通过在成本函数中包含专用术语来修改提出的对抗域适应模型的训练,以改善特定遥感应用程序(例如云检测)中的性能。结果表明,当应用提出的转换时,在Landsat-8数据中训练的云检测模型提高了Proba-V中的云检测精度。

The number of Earth observation satellites carrying optical sensors with similar characteristics is constantly growing. Despite their similarities and the potential synergies among them, derived satellite products are often developed for each sensor independently. Differences in retrieved radiances lead to significant drops in accuracy, which hampers knowledge and information sharing across sensors. This is particularly harmful for machine learning algorithms, since gathering new ground truth data to train models for each sensor is costly and requires experienced manpower. In this work, we propose a domain adaptation transformation to reduce the statistical differences between images of two satellite sensors in order to boost the performance of transfer learning models. The proposed methodology is based on the Cycle Consistent Generative Adversarial Domain Adaptation (CyCADA) framework that trains the transformation model in an unpaired manner. In particular, Landsat-8 and Proba-V satellites, which present different but compatible spatio-spectral characteristics, are used to illustrate the method. The obtained transformation significantly reduces differences between the image datasets while preserving the spatial and spectral information of adapted images, which is hence useful for any general purpose cross-sensor application. In addition, the training of the proposed adversarial domain adaptation model can be modified to improve the performance in a specific remote sensing application, such as cloud detection, by including a dedicated term in the cost function. Results show that, when the proposed transformation is applied, cloud detection models trained in Landsat-8 data increase cloud detection accuracy in Proba-V.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源