论文标题

使用卷积神经网络的X射线选定星系群集候选X射线的多波长分类

Multiwavelength classification of X-ray selected galaxy cluster candidates using convolutional neural networks

论文作者

Kosiba, Matej, Lieu, Maggie, Altieri, Bruno, Clerc, Nicolas, Faccioli, Lorenzo, Kendrew, Sarah, Valtchanov, Ivan, Sadibekova, Tatyana, Pierre, Marguerite, Hroch, Filip, Werner, Norbert, Burget, Lukáš, Garrel, Christian, Koulouridis, Elias, Gaynullina, Evelina, Molham, Mona, Ramos-Ceja, Miriam E., Khalikova, Alina

论文摘要

星系簇在XMM-Newton图像中以扩展来源的形式出现,但并非所有扩展来源都是簇。因此,他们的正确分类需要使用光学图像进行视觉检查,这是一个缓慢的过程,其偏见几乎是不可能建模的。我们使用一种新的方法使用卷积神经网络(CNN)(一种最先进的图像分类工具)来解决这个问题,用于自动分类星系群集候选者。我们将网络训练网络XMM-Newton X射线观测以及来自全套数字化的Sky调查的光学对应物。我们的数据集源自由专门开发的管道Xamin选择的X级候选X级调查样本,该样本量身定制,用于扩展源检测和表征。我们的数据集包含由专家分类的1 707个Galaxy群集候选。此外,我们创建了一个官方的Zooniverse公民科学项目,即寻找Galaxy群集,以调查公民志愿者是否可以帮助您完成一项充满挑战的星系集群视觉确认的任务。该项目包含1600个星系群集候选者,其中404个与专家的样本重叠。这些网络分别对专家和周围数据进行了培训。 CNN测试样品包含85个光谱确认的簇和85个出现在两个数据集中的非群集。我们的自定义网络在集群和非群集的二进制分类中取得了最佳性能,在10次运行后取得的准确性为90%。在联合X射线上使用CNN和用于星系群集候选分类的光学数据的结果令人鼓舞,并且有很大的潜力用于将来使用和改进。

Galaxy clusters appear as extended sources in XMM-Newton images, but not all extended sources are clusters. So, their proper classification requires visual inspection with optical images, which is a slow process with biases that are almost impossible to model. We tackle this problem with a novel approach, using convolutional neural networks (CNNs), a state-of-the-art image classification tool, for automatic classification of galaxy cluster candidates. We train the networks on combined XMM-Newton X-ray observations with their optical counterparts from the all-sky Digitized Sky Survey. Our data set originates from the X-CLASS survey sample of galaxy cluster candidates, selected by a specially developed pipeline, the XAmin, tailored for extended source detection and characterisation. Our data set contains 1 707 galaxy cluster candidates classified by experts. Additionally, we create an official Zooniverse citizen science project, The Hunt for Galaxy Clusters, to probe whether citizen volunteers could help in a challenging task of galaxy cluster visual confirmation. The project contained 1 600 galaxy cluster candidates in total of which 404 overlap with the expert's sample. The networks were trained on expert and Zooniverse data separately. The CNN test sample contains 85 spectroscopically confirmed clusters and 85 non-clusters that appear in both data sets. Our custom network achieved the best performance in the binary classification of clusters and non-clusters, acquiring accuracy of 90 %, averaged after 10 runs. The results of using CNNs on combined X-ray and optical data for galaxy cluster candidate classification are encouraging and there is a lot of potential for future usage and improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源