论文标题

线性扩散的最后一个通行时间,并应用于盒子的排空时间

Last-passage time for linear diffusions and application to the emptying time of a box

论文作者

Comtet, Alain, Cornu, Françoise, Schehr, Gregory

论文摘要

我们研究线性扩散的最后一个通行时间的统计数据。首先,我们提出了最后一个通信时间的概率密度的拉普拉斯变换的基本推导,从而从数学文献中恢复了已知的结果。然后,我们在几个明确的示例中对其进行了说明。在第二步中,我们研究了与潜在的$ u(x)= u(-x)$相关的Schrödinger运算符的光谱特性,揭示了所谓的Weyl系数所起的作用。实际上,在这种情况下,我们的方法使我们能够将双重扩散的最后一个通行时间(即,由相反力场驱动的扩散),并为平均最后一个通用时间获得新的显式公式。我们进一步表明,在这种潜力中,在间隔$ [0,t]上平均最后一个通行时间的小时$ t $扩展涉及Korteveg-de vries不变性,这在Schrödinger经营者理论上是众所周知的。最后,我们将这些结果应用于研究一个尺寸$ l $的一维盒子的排空时间,其中包含$ n $独立的布朗尼颗粒,受到了恒定的漂移。在缩放限制中,$ n \ to \ to \ infty $和$ l \ to \ infty $,保持密度$ρ= n/l $固定,我们表明排空时间的限制密度是由胶状分布给出的。我们的分析提供了一个新的示例,说明了极值统计数据在不平衡系统中的应用。

We study the statistics of last-passage time for linear diffusions. First we present an elementary derivation of the Laplace transform of the probability density of the last-passage time, thus recovering known results from the mathematical literature. We then illustrate them on several explicit examples. In a second step we study the spectral properties of the Schrödinger operator associated to such diffusions in an even potential $U(x) = U(-x)$, unveiling the role played by the so-called Weyl coefficient. Indeed, in this case, our approach allows us to relate the last-passage times for dual diffusions (i.e., diffusions driven by opposite force fields) and to obtain new explicit formulae for the mean last-passage time. We further show that, for such even potentials, the small time $t$ expansion of the mean last-passage time on the interval $[0,t]$ involves the Korteveg-de Vries invariants, which are well known in the theory of Schrödinger operators. Finally, we apply these results to study the emptying time of a one-dimensional box, of size $L$, containing $N$ independent Brownian particles subjected to a constant drift. In the scaling limit where both $N \to \infty$ and $L \to \infty$, keeping the density $ρ= N/L$ fixed, we show that the limiting density of the emptying time is given by a Gumbel distribution. Our analysis provides a new example of the applications of extreme value statistics to out-of-equilibrium systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源