论文标题

Falconer在均匀维度上的距离设置问题的改进结果

An improved result for Falconer's distance set problem in even dimensions

论文作者

Du, Xiumin, Iosevich, Alex, Ou, Yumeng, Wang, Hong, Zhang, Ruixiang

论文摘要

我们表明,如果紧凑型设置$ e \ subset \ mathbb {r}^d $具有大于$ \ frac {d} {2} {2}+\ frac {1} {4} $的hausdorff dimension,其中$ d \ geq 4 $甚至是integer,那么$ e $ e $ e $ $ $ $ $ $ $ $ $。这改善了以前最著名的结果,即在偶数方面对Falconer的距离猜想。

We show that if compact set $E\subset \mathbb{R}^d$ has Hausdorff dimension larger than $\frac{d}{2}+\frac{1}{4}$, where $d\geq 4$ is an even integer, then the distance set of $E$ has positive Lebesgue measure. This improves the previously best known result towards Falconer's distance set conjecture in even dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源