论文标题
剪切测量偏见II:快速机器学习校准方法
Shear measurement bias II: a fast machine learning calibration method
论文作者
论文摘要
我们提出了一种基于机器学习的新剪切校准方法。该方法使用监督学习估算了几个测量属性的对象的单个剪切响应。监督的学习使用从具有不同剪切值的图像模拟的副本获得的真实个体剪切响应。在模拟的Great3DATA上,我们在校准兼容兼容之后,仅使用〜10^5对象,在训练后〜15 cpu小时内,校准与0及以上的欧几里得要求> 20。这种有效的机器学习方法可以使用较小的数据集,因为该方法避免了形状噪声的贡献。输入数据的低维度也导致简单的神经网络体系结构。我们将其与最近描述的方法元素校准进行了比较,该方法显示出相似的性能。不同的方法和系统学表明,这两种方法是很好的互补方法。因此,我们的方法可以在没有太多努力的任何调查(例如Euclid或Vera C. rubin天文台)的情况下应用,其模拟以学习校准函数的图像少于一百万张图像。
We present a new shear calibration method based on machine learning. The method estimates the individual shear responses of the objects from the combination of several measured properties on the images using supervised learning. The supervised learning uses the true individual shear responses obtained from copies of the image simulations with different shear values. On simulated GREAT3data, we obtain a residual bias after the calibration compatible with 0 and beyond Euclid requirements for a signal-to-noise ratio > 20 within ~15 CPU hours of training using only ~10^5 objects. This efficient machine-learning approach can use a smaller data set because the method avoids the contribution from shape noise. The low dimensionality of the input data also leads to simple neural network architectures. We compare it to the recently described method Metacalibration, which shows similar performances. The different methods and systematics suggest that the two methods are very good complementary methods. Our method can therefore be applied without much effort to any survey such as Euclid or the Vera C. Rubin Observatory, with fewer than a million images to simulate to learn the calibration function.