论文标题
在多量表的耦合和仿真中,与双曲线传输的仿真在复杂流中
On the conservation properties in multiple scale coupling and simulation for Darcy flow with hyperbolic-transport in complex flows
论文作者
论文摘要
我们介绍并讨论了一种新的方法来处理保护特性,以在存在的情况下模拟非线性复杂多孔介质流动,以下是:1)在椭圆形压力 - 速度和岩石地质模型中出现的多尺度异质性结构,以及2)由冲击波和稀有性相互作用导致的多尺度波结构,来自冲击波和稀有互动。对于压力速度Darcy流问题,我们重新审视了最近的高阶和体积残留的Lagrange乘数鞍点问题,以对凸多边形施加局部质量保护。我们澄清并改善了应用程序的保护属性。对于双曲线传输问题,我们引入了一种新的保守的拉格朗日 - 欧拉群岛有限体积方法。出于这项工作的目的,我们将我们的方法重新铸造在保护形式的稳定性和收敛性,单调差异的稳定性和收敛性能中,其中方案会收敛到满足熵条件的物理弱溶液。这种多尺度耦合方法应用于几个非平凡的示例,以表明我们正在计算定性正确的参考解决方案。我们将这些程序结合在一起,以模拟基本的两相流问题与高对比度的多尺度多孔介质,但在相关的多尺度应用中回顾了解决方案概念的最新范式。这是处理传统技术的范围内多尺度系统的第一步。我们提供了强大的数值示例,以验证理论并说明所呈现的方法的能力。
We present and discuss a novel approach to deal with conservation properties for the simulation of nonlinear complex porous media flows in the presence of: 1) multiscale heterogeneity structures appearing in the elliptic-pressure-velocity and in the rock geology model, and 2) multiscale wave structures resulting from shock waves and rarefaction interactions from the nonlinear hyperbolic-transport model. For the pressure-velocity Darcy flow problem, we revisit a recent high-order and volumetric residual-based Lagrange multipliers saddle point problem to impose local mass conservation on convex polygons. We clarify and improve conservation properties on applications.For the hyperbolic-transport problem we introduce a newlocally conservative Lagrangian-Eulerian finite volume method. For the purpose of this work, we recast our method within the Crandall and Majda treatment of the stability and convergence properties of conservation-form, monotone difference, in which the scheme converges to the physical weak solution satisfying the entropy condition. This multiscale coupling approach was applied to several nontrivial examples to show that we are computing qualitatively correct reference solutions. We combine these procedures for the simulation of the fundamental two-phase flow problem with high-contrast multiscale porous medium, but recalling state-of-the-art paradigms on the of notion of solution in related multiscale applications. This is a first step to deal with out-of-reach multiscale systems with traditional techniques. We provide robust numerical examples for verifying the theory and illustrating the capabilities of the approach being presented.