论文标题

关于希尔伯特空间中凸形域上有界变化的函数

On functions of bounded variation on convex domains in Hilbert spaces

论文作者

Angiuli, L., Ferrari, S., Pallara, D.

论文摘要

我们研究凸开放式$ω\ subseteq x $,$ x $的有限变化(和有限周长集)的功能,是无限的维度真实希尔伯特空间。我们将通过零件公式的集成定义的此类功能的总变化与与Ornstein-uhlenbeck操作员的扰动相关的半群的短期行为。

We study functions of bounded variation (and sets of finite perimeter) on a convex open set $Ω\subseteq X$, $X$ being an infinite dimensional real Hilbert space. We relate the total variation of such functions, defined through an integration by parts formula, to the short-time behaviour of the semigroup associated with a perturbation of the Ornstein--Uhlenbeck operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源