论文标题
随机匹配的BK不等式
A BK inequality for random matchings
论文作者
论文摘要
令$ g =(s,t,e)$为两部分图。对于$ m $ g $的匹配,让$ v(m)$是$ m $覆盖的顶点,让$ b(m)$是$ v(m)$和$ s $的对称差异。我们证明,如果$ m $是$ g $的统一随机匹配,则$ b(m)$满足增加事件的BK不平等。
Let $G=(S,T,E)$ be a bipartite graph. For a matching $M$ of $G$, let $V(M)$ be the set of vertices covered by $M$, and let $B(M)$ be the symmetric difference of $V(M)$ and $S$. We prove that if $M$ is a uniform random matching of $G$, then $B(M)$ satisfies the BK inequality for increasing events.