论文标题

基于知识嵌入的图形卷积网络

Knowledge Embedding Based Graph Convolutional Network

论文作者

Yu, Donghan, Yang, Yiming, Zhang, Ruohong, Wu, Yuexin

论文摘要

最近,围绕图形卷积网络(GCN)的主题长大的文献已经成长。如何在复杂图中有效利用丰富的结构信息,例如具有异质类型的实体和关系的知识图,是该领域的主要开放挑战。大多数GCN方法要么仅限于具有均匀类型的边缘(例如,仅引用链接)的图形,要么仅专注于节点的表示学习,而不是共同传播和更新目标驱动目标的节点和边缘的嵌入。本文通过提出一个新颖的框架来解决这些局限性,即基于知识的图形卷积网络(KE-GCN),该框架结合了GCN在基于图的信念传播中的力量和高级知识嵌入的强度(又称知识图形嵌入),并超越了。我们的理论分析表明,KE-GCN提供了几种众所周知的GCN方法作为特定情况的优雅统一,并具有新的图形卷积视角。基准数据集的实验结果显示,在知识图对齐和实体分类的任务中,KE-GCN比强基线方法的优势性能。

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源