论文标题

Quillen函子的一些函数化因素化

Some functorial factorizations for Quillen functors

论文作者

Bacard, Hugo

论文摘要

我们证明,任意模型类别之间的任何权利Quillen函数都接受与模型结构相似的非琐碎函数分解。我们还证明,可以针对松弛的单体右奎琳函子进行这些因素化。如果我们将其中一个因素化应用于健忘的函数$ \ Mathcal {u}:\ Mathcal {o} -alg(\ Mathcal {m})\ rightarrow \ rightArrow \ m ratecal {m mathcal {m nection forthen forthen extorment fordive, $ \ MATHCAL {O} $ - 代数没有$ \ Mathcal {M} $的假设为组合模型类别。

We prove that any right Quillen functor between arbitrary model categories admits non trivial functorial factorizations that are similar to those of a model structure. We also prove that these factorizations can be made for lax monoidal right Quillen functors. Given a monad, operad or a PROP(erad) $\mathcal{O}$, if we apply one of the factorizations to the forgetful functor $\mathcal{U} : \mathcal{O}-Alg(\mathcal{M}) \rightarrow \mathcal{M}$, we extend the theory of Quillen-Segal $\mathcal{O}$-algebras without the hypothesis of $\mathcal{M}$ being a combinatorial model category.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源