论文标题

大爆炸核合成期间重中性瘦素的扩展分析

An Extended Analysis of Heavy Neutral Leptons during Big Bang Nucleosynthesis

论文作者

Sabti, Nashwan, Magalich, Andrii, Filimonova, Anastasiia

论文摘要

重型中性瘦素(HNL)是由理论强烈激励的,因为它们同时解释了观察到的暗物质现象,中微子振荡和宇宙的重子不对称。这种颗粒的存在会影响宇宙的扩张历史和光元素原始丰度的综合。在这项工作中,我们在大爆炸核合成期间(BBN)时期审查,修改和扩展了HNL的现象学,以高达1 GEV。这非常重要,因为BBN能够为即将到来的和拟议的实验室实验的人提供互补的界限。为此,我们开发了一个高精度的玻尔兹曼代码,该代码在HNL存在的情况下模拟了BBN,并考虑了所有相关的HNL衰减通道,以及随后衰减产物(热化和衰减阵雨)的相互作用,由于QCD相位过渡而引起的稀释,QCD相位过渡,激活的中性振荡和校正对弱反应的反应速率。我们在HNL的生命周期和混合角度介绍了大量$ 3 \,\ mathrm {Mev} \ leq m_n \ leq 1 \,\ Mathrm {gev} $,并表明BBN能够将HNL寿命限制为0.03-0.03-0.05 $ s的模式,依赖于混音,bbn可以约束HNL寿命。此外,将我们的结果与当前的实验搜索结合在一起,我们可以将纯粹与电子中微子纯粹混合的HNL排除在$ {\ sim} $ 450 MEV和那些纯粹与Muon Neutrinos混合的HNL,最多可与$ {\ sim} $ 360 MEV混合在一起,在这两种情况下,在这两种情况下,至少可以至少在几个秒数上均可使用。最后,我们将BBN的约束与从宇宙微波背景观察中获得的约束进行了比较,并探讨了通过许多即将进行的和拟议的实验室实验将如何改善我们的结果。

Heavy Neutral Leptons (HNLs) are strongly motivated by theory due to their capability of simultaneously explaining the observed phenomena of dark matter, neutrino oscillations and the baryon asymmetry of the Universe. The existence of such particles would affect the expansion history of the Universe and the synthesis of primordial abundances of light elements. In this work we review, revise and extend the phenomenology of HNLs during the Big Bang Nucleosynthesis (BBN) epoch for masses up to 1 GeV. This is of great importance, as BBN is able to provide complementary bounds to those from upcoming and proposed laboratory experiments. To this end we have developed a high-precision Boltzmann code that simulates BBN in the presence of HNLs and takes into account all relevant HNL decay channels, as well as subsequent interactions of decay products (thermalization and decay showers), dilution due to QCD phase transition, active neutrino oscillations and corrections to the weak reaction rates. We present robust bounds on the lifetime and mixing angles of HNLs for masses $3\,\mathrm{MeV}\leq m_N \leq 1\,\mathrm{GeV}$ and show that BBN is able to constrain HNL lifetimes down to $0.03 - 0.05$ s, depending on the mixing pattern. Moreover, combining our results with current experimental searches, we can exclude HNLs that mix purely with electron neutrinos up to ${\sim}$450 MeV and those that mix purely with muon neutrinos up to ${\sim}$360 MeV, in both cases for lifetimes up to at least a few tens of seconds. Finally, we compare the BBN constraints with those obtained from Cosmic Microwave Background observations and explore how our results will be improved by a number of upcoming and proposed laboratory experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源