论文标题
riemannian流形之间的谐波图的能量估计
Energy estimates of harmonic maps between Riemannian manifolds
论文作者
论文摘要
令$ω\ subset {r}^n,$ $ n \ geq 3,$为有限的开放集,$ x =(x_1,x_2,x_2,\ ldots,x_n)$ a属于$ω,$ $ $ $ u \ u \ u \ u \ u \ u \ colonω\ to {r}^n,$ n> $ n> $ n> $ n> 1,d_ d_ \ partial/\ partialx_α,$ $ a = 1,\ ldots,n,\,$ $ i = 1,\ ldots,n。\,$ 主要目标是研究非不同功能的最小值的规律性$$ {\ cal f} \,= \,\int_Ωf(x,x,u,u,du)dx。 $$具有整体功能不同的平滑形状。该方法基于对功能的一些大量化,而不是与之相关的众所周知的欧拉方程。
Let $Ω\subset {R}^n,$ $n \geq 3,$ be a bounded open set, $x=(x_1,x_2,\ldots,x_n)$ a generic point which belongs to $Ω,$ $u \colon Ω\to {R}^N ,$ $N>1,$ and $ Du=(D_αu^i)$, $D_α= \partial/\partial x_α, $ $α=1,\ldots,n,\,$ $i=1,\ldots,N .\,$ Main goal is the study of regularity of the minima of nondifferentiable functionals $$ {\cal F} \,=\, \int_ΩF(x,u,Du) dx. $$ having the integrand function different shapes of smoothness. The method is based on the use some majorizations for the functional, rather than the well known Euler equation associated to it.