论文标题

riemannian流形之间的谐波图的能量估计

Energy estimates of harmonic maps between Riemannian manifolds

论文作者

Ragusa, M. A., Tachikawa, A.

论文摘要

令$ω\ subset {r}^n,$ $ n \ geq 3,$为有限的开放集,$ x =(x_1,x_2,x_2,\ ldots,x_n)$ a属于$ω,$ $ $ $ u \ u \ u \ u \ u \ u \ colonω\ to {r}^n,$ n> $ n> $ n> $ n> 1,d_ d_ \ partial/\ partialx_α,$ $ a = 1,\ ldots,n,\,$ $ i = 1,\ ldots,n。\,$ 主要目标是研究非不同功能的最小值的规律性$$ {\ cal f} \,= \,\int_Ωf(x,x,u,u,du)dx。 $$具有整体功能不同的平滑形状。该方法基于对功能的一些大量化,而不是与之相关的众所周知的欧拉方程。

Let $Ω\subset {R}^n,$ $n \geq 3,$ be a bounded open set, $x=(x_1,x_2,\ldots,x_n)$ a generic point which belongs to $Ω,$ $u \colon Ω\to {R}^N ,$ $N>1,$ and $ Du=(D_αu^i)$, $D_α= \partial/\partial x_α, $ $α=1,\ldots,n,\,$ $i=1,\ldots,N .\,$ Main goal is the study of regularity of the minima of nondifferentiable functionals $$ {\cal F} \,=\, \int_ΩF(x,u,Du) dx. $$ having the integrand function different shapes of smoothness. The method is based on the use some majorizations for the functional, rather than the well known Euler equation associated to it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源