论文标题

大约中央预测的模块化图像

Modular Images Of Approximately Central Projections

论文作者

Walters, Samuel G.

论文摘要

It is shown that for any approximately central (AC) projection $e$ in the Flip orbifold $A_θ^Φ$ (of the irrational rotation C*-algebra $A_θ$), and any modular automorphism $α$ (arising from SL$(2,\mathbb Z)$), the AC projection $α(e)$ is centrally Murray-von Neumann equivalent to one of the projections $ e,\σ(e),\κ(e),\κ^2(e),$ $σκ(e),\σκ^2(e)$ in $ s_3 $ e,$ e,$σ,$σ,κ$是$a_θ$的傅立叶和立方体变换。 (通过$a_θ^φ$的大约中心部分等轴测实现的等效性。对于每个交流投影$ e $。

It is shown that for any approximately central (AC) projection $e$ in the Flip orbifold $A_θ^Φ$ (of the irrational rotation C*-algebra $A_θ$), and any modular automorphism $α$ (arising from SL$(2,\mathbb Z)$), the AC projection $α(e)$ is centrally Murray-von Neumann equivalent to one of the projections $e,\ σ(e),\ κ(e),\ κ^2(e),$ $σκ(e),\ σκ^2(e)$ in the $S_3$-orbit of $e,$ where $σ, κ$ are the Fourier and Cubic transforms of $A_θ$. (The equivalence being implemented by an approximately central partial isometry in $A_θ^Φ$.) For smooth automorphisms $α,β$ of the Flip orbifold $A_θ^Φ$, it is also shown that if $α_*=β_*$ on $K_0(A_θ^Φ),$ then $α(e)$ and $β(e)$ are centrally equivalent for each AC projection $e$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源