论文标题

基于反复蒸馏的人群计数

Recurrent Distillation based Crowd Counting

论文作者

Gu, Yue, Liu, Wenxi

论文摘要

近年来,随着深度学习技术的进步,人群计数得到了迅速发展。在这项工作中,我们提出了一个简单而有效的人群计数框架,能够在各种拥挤的场景上实现最先进的表现。特别是,我们首先引入了一种透视感密度图生成方法,该方法能够从点注释到训练人群计数模型,从而产生地面真相密度图,以实现与先前的密度图生成技术相比。此外,利用我们的密度图生成方法,我们提出了一种迭代蒸馏算法来通过相同的网络结构逐步增强我们的模型,而无需显着牺牲输出密度图的尺寸。在实验中,我们证明,通过提出的培训算法加强了简单的卷积神经网络结构,我们的模型能够胜过或与最新方法相媲美。此外,我们还评估了消融研究中的密度图生成方法和蒸馏算法。

In recent years, with the progress of deep learning technologies, crowd counting has been rapidly developed. In this work, we propose a simple yet effective crowd counting framework that is able to achieve the state-of-the-art performance on various crowded scenes. In particular, we first introduce a perspective-aware density map generation method that is able to produce ground-truth density maps from point annotations to train crowd counting model to accomplish superior performance than prior density map generation techniques. Besides, leveraging our density map generation method, we propose an iterative distillation algorithm to progressively enhance our model with identical network structures, without significantly sacrificing the dimension of the output density maps. In experiments, we demonstrate that, with our simple convolutional neural network architecture strengthened by our proposed training algorithm, our model is able to outperform or be comparable with the state-of-the-art methods. Furthermore, we also evaluate our density map generation approach and distillation algorithm in ablation studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源