论文标题

通过平衡表示,实现反事实生存分析

Enabling Counterfactual Survival Analysis with Balanced Representations

论文作者

Chapfuwa, Paidamoyo, Assaad, Serge, Zeng, Shuxi, Pencina, Michael J., Carin, Lawrence, Henao, Ricardo

论文摘要

平衡表示学习方法已成功地应用于观察数据的反事实推断。但是,说明生存结果的方法相对有限。生存数据经常在不同的医疗应用中遇到,即药物开发,风险分析和临床试验,并且此类数据在制造等领域(例如,用于设备监控)等领域。当感兴趣的结果是事件时间的一项时间,需要采取审查事件的特殊预防措施,因为忽略审查的结果可能会导致偏见的估计。我们提出了一个理论上扎根的统一框架,用于适用于生存结果的反事实推理。此外,我们制定了非参数危害比率度量,以评估平均水平和个性化治疗效果。关于现实世界和半合成数据集的实验结果,我们引入了后者,这表明,在生存结果预测和治疗效果估计中,所提出的方法显着超过竞争性替代方案。

Balanced representation learning methods have been applied successfully to counterfactual inference from observational data. However, approaches that account for survival outcomes are relatively limited. Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials, and such data are also relevant in fields like manufacturing (e.g., for equipment monitoring). When the outcome of interest is a time-to-event, special precautions for handling censored events need to be taken, as ignoring censored outcomes may lead to biased estimates. We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes. Further, we formulate a nonparametric hazard ratio metric for evaluating average and individualized treatment effects. Experimental results on real-world and semi-synthetic datasets, the latter of which we introduce, demonstrate that the proposed approach significantly outperforms competitive alternatives in both survival-outcome prediction and treatment-effect estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源