论文标题

带有两个piatetski-shapiro Prime的三元戈德巴赫问题和一个数字缺失的素数

The ternary Goldbach problem with two Piatetski-Shapiro primes and a prime with a missing digit

论文作者

Maier, Helmut, Rassias, Michael Th.

论文摘要

令$γ^*= \ frac {8} {9}+\ frac {2} {3} {\ frac {\ frac {\ log(10/9)} {\ log 10} \ \:(\ by:(\ ldots) 固定的。还让$ a_0 \ in \ {0,1,\ ldots,9 \} $。\\我们证明,我们可以假设一个普遍的Riemann假设,即每个足够大的奇数整数$ n_0 $都可以用$ $ n_0 = p_1+p_1+p_1+p_2+p_2+p_3 \: $ p_i = [n_i^{c_0}] $,$ n_i \ in \ mathbb {n} $,对于$ i = 1,2 $,$ p_3 $的小数扩展不包含数字$ a_0 $。 Piatetski-Shapiro Primes和两个变量中的Hardy-Little Wood Circle方法。这是三元戈德巴赫问题的第一个结果,即混合类型的素数,涉及数字缺失的素数。

Let $$γ^*=\frac{8}{9}+\frac{2}{3}\:\frac{\log(10/9)}{\log 10}\:(\approx 0.919\ldots)\:.$$ Let $γ^*<γ_0\leq 1$, $c_0=1/γ_0$ be fixed. Let also $a_0\in\{0,1,\ldots, 9\}$.\\ We prove on assumption of the Generalized Riemann Hypothesis that each sufficiently large odd integer $N_0$ can be represented in the form $$N_0=p_1+p_2+p_3\:,$$ where the $p_i$ are of the form $p_i=[n_i^{c_0}]$, $n_i\in\mathbb{N}$, for $i=1,2$ and the decimal expansion of $p_3$ does not contain the digit $a_0$.\\ The proof merges methods of J. Maynard from his paper on the infinitude of primes with restricted digits, results of A. Balog and J. Friedlander on Piatetski-Shapiro primes and the Hardy-Littlewood circle method in two variables. This is the first result on the ternary Goldbach problem with primes of mixed type which involves primes with missing digits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源