论文标题

迈向人脑中的非参数纤维特异性$ T_1 $放松计

Towards non-parametric fiber-specific $T_1$ relaxometry in the human brain

论文作者

Reymbaut, A., Critchley, J., Durighel, G., Sprenger, T., Sughrue, M., Bryskhe, K., Topgaard, D.

论文摘要

目的:在异质性脑组织中估计纤维特异性$ T_1 $值,即髓磷脂含量的代理。方法:扩散 - $ t_1 $相关实验是在体内人脑上使用张量值扩散编码和多次重复时间进行的。使用的蒙特卡洛反转算法倒置了获取的数据,该算法检索非参数分布$ \ Mathcal {p}(\ Mathbf {d},R_1),R_1)$的扩散张量和纵向放松率$ R_1 = 1/T_1 $。 $ \ Mathcal {p}(\ Mathbf {d},r_1)$的高度各向异性组件的方向分布函数(ODF)被定义为可视化方向特异性扩散 - 重音 - 重音属性。最后,进行了蒙特卡罗密度峰聚类(MC-DPC),以量化纤维特异性特征并研究白色纤维束之间的微观结构差异。结果:获得的参数图对应于$ \ Mathcal {p}(\ Mathbf {d},R_1)$的统计描述符,显示了预期的$ r_1 $对比度对比度。我们的ODF恢复了与已知的解剖结构一致的局部方向,并指出主要纤维束之间的$ T_1 $松弛差异可能差异。这些差异由MC-DPC证实,与以前的基于模型的作品有定性一致,但似乎对我们当前的实验设置的局限性有偏见。结论:我们的蒙特卡罗框架可以实现纤维特异性扩散的非参数估计 - $ T_1 $特征,从而显示出特征在给定光纤束中$ T_1 $的发育或病理变化的潜力,以及研究捆绑间$ T_1 $差异。

Purpose: To estimate fiber-specific $T_1$ values, i.e. proxies for myelin content, in heterogeneous brain tissue. Methods: A diffusion-$T_1$ correlation experiment was carried out on an in vivo human brain using tensor-valued diffusion encoding and multiple repetition times. The acquired data was inverted using a Monte-Carlo inversion algorithm that retrieves non-parametric distributions $\mathcal{P}(\mathbf{D},R_1)$ of diffusion tensors and longitudinal relaxation rates $R_1 = 1/T_1$. Orientation distribution functions (ODFs) of the highly anisotropic components of $\mathcal{P}(\mathbf{D},R_1)$ were defined to visualize orientation-specific diffusion-relaxation properties. Finally, Monte-Carlo density-peak clustering (MC-DPC) was performed to quantify fiber-specific features and investigate microstructural differences between white-matter fiber bundles. Results: Parameter maps corresponding to $\mathcal{P}(\mathbf{D},R_1)$'s statistical descriptors were obtained, exhibiting the expected $R_1$ contrast between brain-tissue types. Our ODFs recovered local orientations consistent with the known anatomy and indicated possible differences in $T_1$ relaxation between major fiber bundles. These differences, confirmed by MC-DPC, were in qualitative agreement with previous model-based works but seem biased by the limitations of our current experimental setup. Conclusions: Our Monte-Carlo framework enables the non-parametric estimation of fiber-specific diffusion-$T_1$ features, thereby showing potential for characterizing developmental or pathological changes in $T_1$ within a given fiber bundle, and for investigating inter-bundle $T_1$ differences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源